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Abstract

Childhood adversity can lead to cognitive deficits or enhancements, depending on

many factors. Though progress has been made, two challenges prevent us from inte-

grating and better understanding these patterns. First, studies commonly use and

interpret raw performance differences, such as response times, which conflate differ-

ent stages of cognitive processing. Second, most studies either isolate or aggregate

abilities, obscuring the degree to which individual differences reflect task-general

(shared) or task-specific (unique) processes. We addressed these challenges using

Drift Diffusion Modeling (DDM) and structural equation modeling (SEM). Leveraging

a large, representative sample of 9–10 year-olds from the Adolescent Brain Cognitive

Development (ABCD) study,we examined how two forms of adversity—material depri-

vation and household threat—were associated with performance on tasks measuring

processing speed, inhibition, attention shifting, and mental rotation. Using DDM, we

decomposed performance on each task into three distinct stages of processing: speed

of information uptake, response caution, and stimulus encoding/response execution.

Using SEM, we isolated task-general and task-specific variances in each processing

stage and estimated their associations with the two forms of adversity. Youth with

more exposure to household threat (but notmaterial deprivation) showed slower task-

general processing speed, but showed intact task-specific abilities. In addition, youth

withmore exposure to household threat tended to respondmore cautiously in general.

These findings suggest that traditional assessments might overestimate the extent

to which childhood adversity reduces specific abilities. By combining DDM and SEM

approaches, we can develop a more nuanced understanding of how adversity affects

different aspects of youth’s cognitive performance.
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Research Highlight

∙ To understand how childhood adversity shapes cognitive abilities, the field needs

analytical approaches that can jointly document and explain patterns of lowered and

enhanced performance.

∙ UsingDriftDiffusionModeling andStructural EquationModeling,we analyzed asso-

ciations between adversity and processing speed, inhibition, attention shifting, and

mental rotation.

∙ Household threat, but not material deprivation, was mostly associated with slower

task-general processing speed andmore response caution. In contrast, task-specific

abilities were largely intact.

∙ Researchers might overestimate the impact of childhood adversity on specific abil-

ities and underestimate the impact on general processing speed and response

caution using traditional measures.

1 INTRODUCTION

The effects of early-life adversity—such as growing up in poverty or

experiencing high levels of violence—on cognition are complex. There

is a growing consensus that adversity-exposed youth may develop not

only deficits, but also strengths. For example, studies find lowered and

improved performance across different cognitive domains including

(but not limited to) executive functioning, social cognition, language,

and emotion (Ellis et al., 2022; Frankenhuis &Weerth, 2013; Franken-

huis et al., 2016; Sheridan & McLaughlin, 2014; Sheridan et al., 2022).

Researchers focused on one type of effect or another acknowledge the

importance of identifying both deficits and strengths. Yet, in practice,

they often focus on one at the expense of the other. To develop an

integrated, well-rounded, and nuanced understanding of how adver-

sity shapes cognitive abilities, research must integrate both types of

effects.

Such an integration of deficit- and strength-based approaches is

hampered by two methodological challenges. First, most cognitive

tasks involve different stages of processing which are obscured when

analyzing rawperformancedifferences. Thismakes it difficult to under-

standwhycognitiveperformancemaybe loweredor improved. Second,

adversity may lower or improve performance because it affects gen-

eral processes (i.e., processes shared across many tasks) or abilities

that are task-specific. In this Registered Report, we use a framework

that tackles both challenges. First, we decompose raw performance

into measures of different stages of cognitive processes through

cognitive modeling. Second, we analyze four different tasks—tapping

processing speed, attention shifting, inhibition, and mental rotation—

all of which have documented associations with adversity. Finally, we

model shared (i.e., task-general) and unique (i.e., task-specific) factors

that drive performance and investigate how they are associated with

adversity.

1.1 What do deficit and enhancement patterns
mean?

Both the deficit and strength-based literature often use speeded tasks,

in which participants are usually instructed to respond as fast and

accurate as possible. For example, performing well on inhibition tasks

(e.g., Flanker task, Go/No-Go Task; Farah et al., 2006; Fields et al.,

2021; Mezzacappa, 2004; Noble et al., 2005), attention shifting tasks

(e.g., Dimensional Change Card Sort; Farah et al., 2006; Fields et al.,

2021; Mittal et al., 2015; Noble et al., 2005; Nweze et al., 2021; Young

et al., 2022), and stimulus detection tasks (Farah et al., 2006; Noble

et al., 2005; Pollak, 2008) requires fast and accurate responses. In

practice, performance is often quantified using aggregated indices of

speed alone (e.g., RT), accuracy alone (e.g., proportion correct), or both

independently (rather than in an integratedmanner).

In both the deficit and strength-based literature, task performance

(indexed by mean RTs or accuracy) is routinely equated with cognitive

ability. For example, deficit-focused studies relate slower RTs on

inhibition tasks to worse inhibition ability (Farah et al., 2006; Fields

et al., 2021; Mezzacappa, 2004; Noble et al., 2005). Strength-based

studies relate faster RTs on standard attention shifting tasks to better

shifting ability (Fields et al., 2021;Mittal et al., 2015; Young et al., 2022).

However, speed and accuracy comprise more than pure ability (e.g.,

inhibition, attention shifting). They alsomeasure other constructs such

as response caution (e.g., more or less cautious responding), speed of

task preparation (e.g., orienting attention, encoding information), and

speed of response execution. This heterogeneity creates an inferential

risk, namely, if performance differences are interpreted as differences

in abilities without sufficiently considering alternative explanations. In

addition, the effect of adversity exposuremay not be limited to a single



VERMEENT ET AL. 3 of 17

F IGURE 1 A visual overview of the Drift DiffusionModel (DDM). The DDMassumes that decisionmaking on cognitive tasks with two forced
response options advances through three stages. First, people go through a preparation phase in which they engage in initial stimulus encoding.
Second, people gather information for one of two response options until the accumulation process terminates at one of the decision boundaries.
Each squiggly line represents the evidence accumulation process on a single trial. Third, a motor response is triggered in the execution phase. The
model estimates four parameters that reflect distinct cognitive processes (printed in italic): (1) The drift rate represents the rate at which evidence
accumulation drifts toward the decision boundary and is ameasure of processing speed; (2) The non-decision time represents the combined time
spent on task preparation and response execution; (3) The boundary separation represents the width of the decision boundaries and is a measure of
response caution; (4) The starting point represents the starting point of the decision process and can be used tomodel response biases (not
considered in this study).

process. For example, a specific type of adversity could affect both the

speed of information processing and also shape the strategy that a

person uses. These inferential challenges have real-world implications,

especially when raw performance is used as an early screening tool to

assess cognitive abilities (Distefano et al., 2021).

One promising solution to these issues is leveraging cognitive

measurement models developed by mathematical psychologists. For

speeded binary decision tasks, a well-established measurement model

is the Drift Diffusion Model (DDM; Forstmann et al., 2016; Ratcliff

& McKoon, 2008; Ratcliff & Rouder, 1998; Wagenmakers, 2009). The

DDM integrates speed and accuracy on a trial-by-trial level to estimate

cognitive processes at different stages of the decision-making process.

The DDM assumes that people go through three distinct phases on

each trial (see Figure 1 for a visualization). The first phase, preparation,

includes processes such as focusing attention and visually encoding the

stimulus. In the second phase, decision-making, people gather evidence

for both response options until the evidence sufficiently favors one

option over the other (explained below) and the decision process ter-

minates. The third phase, execution, involves preparing and executing

themotor response corresponding to the choice.

DDM estimates a set of parameters1 for each participant that rep-

resent each phase of the decision process (Voss et al., 2004). The drift

rate (v) represents the speed of information uptake (Schmiedek et al.,

2007; Voss et al., 2013). People with a higher drift rate are faster and

make fewer errors. The non-decision time (t0) includes initial prepara-

tory processes (e.g., visually encoding the stimulus) and processes after

the decision ismade (e.g., pressing a button). All else being equal, longer

non-decision times reflect slower information processing butwithout a

cost nor benefit in accuracy. The boundary separation (a) represents the

distance between the two decision boundaries. A larger boundary sep-

aration means more information is collected before making a decision.

Thus, boundary separation measures response caution. In contrast

to non-decision time, larger boundary separation leads to slower but

more accurate responses, reflecting a speed-accuracy tradeoff.

As mentioned earlier, adversity-related raw performance

differences—both lowered and improved performance—are typi-

cally interpreted as differences in ability (e.g., inhibition, attention

shifting). If these interpretations are accurate, then drift rate would

reflect these variations. That is because improved ability would result

in both decreased RTs and increased accuracy. However, if perfor-

mance differences arise through other factors—such as differences

in response caution or response speed—they would be captured

by parameters other than the drift rate. Thus, disentangling the

drift rate, non-decision time, and boundary separation enhances

our understanding of how adversity-exposure is associated with

performance.

1.2 Are deficit and enhancement patterns
task-specific or task-general?

An important caveat to interpreting task performance on any task in

isolation is that performance on most tasks relies both on shared cog-

nitive processes and unique abilities. For example, RTs on executive

functioning tasks are substantially confounded with general process-

ing efficiency (Frischkorn et al., 2019; Lerche et al., 2020; Löffler et al.,

2022). Both task-specific abilities and task-general processes affect

RTs and accuracy in similar ways and are thus likely confounded in

drift rates. Task-general effects create the illusion that many differ-

ent abilities are affected by adversity when in fact only one more

general process is affected. Consider research on cognitive deficits.

Adversity exposure might disrupt general cognitive processes shared
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across many tasks, such as general processing speed, for example,

because of its effects on brain regions that are involved across several

cognitive abilities (Sheridan & McLaughlin, 2014). If so, studies ana-

lyzing raw Flanker performance in isolation will find processing speed

deficits but wrongly interpret this as an inhibition deficit. Such distinc-

tionsmatter for both deficit- and strength-based approaches (e.g., does

adversity impair broad domains such as executive functioning? Does it

enhance specific abilities such as attention shifting?), aswell as for real-

world interventions grounded in both approaches (e.g., school-based

interventions targeting broad domains or specific abilities).

Structural equation modeling (SEM) can disentangle task-general

and task-specific processes. For example, it can estimate shared task

variance with latent task-general variables. By estimating shared vari-

ance across different tasks, we can also obtain more precise estimates

of task-specific abilities (i.e., variance unique to specific tasks). Bignardi

et al. (2023) recently applied this approach to model how socioe-

conomic status (SES) is related to standard performance measures

in three large data sets. They used SEM to model the effect of SES

on a general factor and task-specific residual variances. Lower SES

was associated with a lower general ability, but enhanced task-specific

processing speed, inhibition, and attention shifting. However, their

analysis looked at shared and unique variance using raw performance

measures. Thus, it is subject to the same limitations outlined in the

previous section.

1.3 The current study

Here, we analyzed the Adolescent Brain Cognitive Development

(ABCD) study data (http://abcdstudy.org). The ABCD study is ideal

because it provides a large, representative, and socioeconomically and

ethnically diverse sample of 9–10 year-olds–—an age range character-

ized by rapid growth in cognitive abilities (Blakemore & Choudhury,

2006).

We studied two dimensions of adversity: household threat and

material deprivation. These forms of adversity have been widely stud-

ied in their relation to cognitive outcomes—from both deficit and

strength-based perspectives (Fields et al., 2021; Schäfer et al., 2022;

Sheridan et al., 2022; Young et al., 2022)—and are central to contem-

porary conceptualizations of adversity (e.g., McLaughlin et al., 2021;

Sheridan & McLaughlin, 2014). Prior work has shown that cognitive

deprivation is more strongly associated with lower cognitive perfor-

mance than threat exposure (Salhi et al., 2021; Sheridan et al., 2020).

Althoughmaterial deprivation (as measured here) and cognitive depri-

vation (in previous studies) are not identical, both seem related to

access to resources that support cognitive development (e.g., books

in the home, formal education). Indeed, in the ABCD sample material

deprivation is highly ormoderately correlatedwith income (−0.81) and

education (−0.56), while correlations with household threat are lower

(−0.25 and −0.12, respectively; DeJoseph et al., 2022). Therefore, to

the extent that the deprivation-versus-threat literature has captured

ability-relevant processes, we may expect material deprivation to be

more strongly associated with lower drift rates than threat exposure.

We analyzed four cognitive abilities that have been studied in rela-

tion to adversity. We included attention shifting because previous work

has reported enhancement of this ability in children and (young) adults

with more exposure to environmental unpredictability (based on raw

performance switch costs; Fields et al., 2021; Mittal et al., 2015;

Young et al., 2022; but see Nweze et al., 2021). Theoretically, atten-

tion shifting is thought to enable people to rapidly adjust to, and take

advantage of, a changing environment (e.g., seize fleeting opportuni-

ties). We included inhibition because previous research suggests that

children with more adverse experiences are worse at inhibiting dis-

tracting information (based on raw RT difference scores; Fields et al.,

2021; Mezzacappa, 2004; Mittal et al., 2015; Tibu et al., 2016). We

included mental rotation because previous studies have found nega-

tive associations between SES and mental rotation ability (based on

RTs and accuracy; Assari, 2020; Bignardi et al., 2023). To the extent

that these performance differences reflect differences in the respec-

tive abilities—as they have been interpreted—they should show up in

task-specific drift rates. We also included a measure of processing speed,

which was not measured in relation to adversity but provided a direct

measure of the type of basic processing speed that plays a role in the

other tasks. Taken together, the four tasks provided a broad assess-

ment of cognitive domains, which makes themwell-suited for isolating

task-general processes. As all four tasks adhere to DDM assumptions,

we could compare them based on the samemodel parameters.

Adaptation-based frameworks predict increased task-specific drift

rates. This follows from the key assumption that adversity shapes

specific abilities, rather than general cognitive processes (Ellis et al.,

2022; Frankenhuis & Weerth, 2013; Frankenhuis et al., 2016, 2020).

Task-specific enhancement in the attention-shifting drift rate would

align with this assumption, as this ability is thought to be adaptive in

changing environments; but enhancement in the task-general drift rate

would not. One study reports evidence suggesting that exposure to

threat but not deprivation is associated with better attention shifting

(Young et al., 2022). If so, we should expect to see higher task-specific

drift rates with household threat, but not with material deprivation.

Enhanced task-specific drift rates on inhibition and mental rotation

would be unexpected yet interesting. It would constitute novel doc-

umentation of enhancements, and would suggest that lowered raw

performance reflects ability-irrelevant processes. Finally, equivalent

drift rates across adversity levels would also not be consistent with

strength-based frameworks; rather, such a pattern would suggest that

abilities are intact (i.e., not affected by adversity).

Deficit perspectives can accommodate both lowered task-specific

and lowered task-general drift rates. On the one hand, past work sug-

gests that adversity impairs specific abilities (e.g., inhibition; Farah

et al., 2006; Fields et al., 2021; Mezzacappa, 2004; Mittal et al., 2015).

On the other hand, there is also evidence that adversity affects gen-

eral cognitive ability (Bignardi et al., 2023)—perhaps through its broad

effects on brain regions that are involved across several cognitive abil-

ities (Sheridan &McLaughlin, 2014). However, equivalent or enhanced

drift rates, whether they be task-specific or task-general, would not

be consistent with deficit perspectives; rather, this would suggest that

abilities are intact or enhanced.

http://abcdstudy.org
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Our approach adds value in a third way besides separating drift

rate from ability-irrelevant factors and isolating task-specific and

task-general effects: It allows us to quantify cognitive deficits and

enhancements separately within the same model. This is because the

task-specific and task-general estimates are statistically independent.

Thus, for instance, we may find that adversity lowers general drift

rate, as well as some task-specific drift rate (e.g., capturing inhibition),

but increases other task-specific drift rates (e.g., capturing attention

shifting).

If the drift rates we observe align with previous interpretations

of performance differences as outlined above, our findings support

existing theories about deficits and enhancements. However, if not

drift rates, but non-decision time or boundary separation account

for the existing findings, and drift rates do not, neither deficit- or

adaptation-based frameworks are supported. Thiswould at aminimum

invite reflection—perhaps revision—of the evidence base for (parts of)

these frameworks. At the same time, such findings would offer clear

directions for future research in this field (e.g., which factors explain

variation in non-decision times and/or boundary separation across lev-

els of adversity). Thus, regardless of the specific pattern of outcomes,

our analyses contribute to an accurate and refined understanding of

how early-life adversity shapes cognitive abilities.

2 METHODS

2.1 Sample

The ABCD study (http://abcdstudy.org), is a prospective, longitudinal

study of approximately 12,000 youth across the United States. We

focused on the baseline assessment, which has the largest collection

of cognitive tasks suitable for DDM (Luciana et al., 2018). There were

four tasks: (1) Processing Speed Task (Pattern Comparison Process-

ing Speed Task), (2) Attention Shifting Task (Dimensional Change Card

Sort Task), (3) Inhibition Task (Flanker Task), and (4) Mental Rotation

Task (Little Man Task). At baseline, the study included 11,878 youths

(aged between 9 and 10 years old, measured in months) recruited

across 21 sites. The study used multi-stage probability sampling to

obtain a nationally representative sample (Heeringa et al., 2010). Base-

line assessments were completed between September 1st 2016 and

August 31st 2018 (see Garavan et al., 2018). Our analysis sample

includes 10,687 participants who had trial-level data available on all

four2 cognitive tasks.

2.2 Open science statement

All analysis scripts, materials, and instructions needed to reproduce

the findings are available on the article’s Github repository (https://

stefanvermeent.github.io/abcd_ddm/). The raw study data cannot be

shared on public repositories. Personal access to the ABCD dataset

is required to fully reproduce our analyses and can be requested at

https://nda.nih.gov.

Weobtained access to the full ABCDdata repository andperformed

initial data cleaning and analyses prior to Stage 1 submission. However,

we preprocessed cognitive task data in isolation to prevent biasing the

analyses involving independent variables. The goal of these analyses

was to assure that the pre-selected cognitive tasks adhered to basic

DDM assumptions and had the required trial-level data available in

the right format. These initial analyses were preregistered. (https://

stefanvermeent.github.io/abcd_ddm/preregistrations/README.html)

To increase transparency, we developed an automated workflow

(using R and Git) to track the data files read into the analysis environ-

ment. First-time access to any data file was automatically tracked via

Git, providing an overview including the timestamp, a description of

the data, and the R code that was used to read in the data. The sup-

plemental materials provide a detailed description and visual overview

of this workflow. An overview of the data access history is provided in

the repository’s README file (https://stefanvermeent.github.io/abcd_

ddm/).

2.3 Exclusion criteria

For the cognitive task data, we applied exclusion criteria in two steps:

first, cleaning trial-level data, and second, removing participants with

problematic trial-level data (discussed below). For both, most criteria

were as preregistered, but a few deviated from or were additional to

the preregistration. The data processing steps described below were

preregistered unless noted otherwise.

First, we removed RTs of the Attention Shifting, Flanker, and Men-

tal Rotation Tasks that exceeded maximum task-specific RT thresh-

olds (>10 s (0.07%), >10 s (0.04%), and >5 s (< 0.01% of trials),

respectively). The Processing Speed Task did not have a programmed

time-out. Instead, we cut-off responses >10 s (0.15% of trials) to

remove extreme outliers. This stepwas not preregistered aswe did not

anticipate these extreme outliers.

Next, we removed trials with: (1) RTs <300 ms (ranging from 0.01%

to 1.03% of trials across tasks); (2) RTs > 3 SD above the participant-

level average log-transformed mean RT (ranging from 0.02% to 0.85%

of trials across tasks; the same thing was done for RTs < 3 SD

on the Processing Speed Task (not preregistered) to remove several

fast outliers); (3) trials with missing response times and/or accuracy

data (<0.01% for all tasks except Mental Rotation). We found that the

response time-out of 5 s on the Mental Rotation Task led to missing

responses on 10.55% of trials. This truncated the right-hand tail of the

RTdistribution,which canbiasDDMestimation. Therefore,wedecided

to impute these values during DDM estimation instead of removing

them (see the Supplemental materials for more information).

Next, we excluded participants who (1) had suffered possible mild

traumatic brain injury or worse (n = 118); (2) showed a response bias

of >80% on a task (ranging between 0 and 212; deviating from the

preregistration); (3) had a low number of trials left after trial-level

exclusions, defined as <20 trials for Mental Rotation and Attention

Shifting (n = 0 and 19, respectively) and <15 trials for Flanker and

Processing Speed (n = 64 and 34, respectively, deviating from the

http://abcdstudy.org
https://stefanvermeent.github.io/abcd_ddm/
https://stefanvermeent.github.io/abcd_ddm/
https://nda.nih.gov
https://stefanvermeent.github.io/abcd_ddm/preregistrations/README.html
https://stefanvermeent.github.io/abcd_ddm/preregistrations/README.html
https://stefanvermeent.github.io/abcd_ddm/index.html
https://stefanvermeent.github.io/abcd_ddm/index.html


6 of 17 VERMEENT ET AL.

TABLE 1 Descriptive statistics for the training and test set.

Training Test

N 1500 9063

Sex (%) 48.7 47.6

Age (mean (SD)) 119 (7.5) 119 (7.4)

Parent highest education in years (mean (SD)) 20.3 (2.4) 20.3 (2.4)

Race

White (%) 53.5 55.6

Black (%) 16.6 16.1

Hispanic (%) 16.9 15.6

Other (mixed, Asian, AIAN, NHPI) 12.9 12.7

Income-to-needs (mean (SD)) 3.8 (2.4) 3.7 (2.4)

preregistration). Finally, we excluded task data of several participants

based on data inspection (not preregistered): two participants with 0%

accuracy on the Mental Rotation Task; two participants who showed

a sharp decline in accuracy over time on the Processing Speed Task;

49 participants on the Attention Shifting Task who (almost) only made

switches across all trials, even on repeat trials. We also decided to

include participants with missing data on one or more tasks because

our main analyses used FIML for missing data.

The final sample consisted of 10,563 participants (See Table 1).

2.4 Measures

2.4.1 Cognitive tasks

Inhibition task. TheNIH Toolbox Flanker task is ameasure of cognitive

control and attention (Zelazo et al., 2014). On each trial, participants

saw five arrows that were positioned side-by-side. The four flank-

ing arrows always pointed in the same direction, either left or right.

The central arrow either pointed in the same direction (congruent

trials) or in the opposite direction (incongruent trials). Participants

were instructed to always ignore the flanking arrows and to indicate

whether the central arrow pointed left or right. After four practice

trials, participants completed 20 test trials, of which 12 were con-

gruent (MeanRT = 0.84 s, SD = 0.28) and eight were incongruent

(MeanRT = 1.02 s, SD= 0.44). The standard outcomemeasure is a nor-

mative composite of accuracy and RT. For more information on the

exact calculation, see Slotkin et al. (2012).

Processing speed task. The NIH Toolbox Pattern Comparison Pro-

cessing Speed task (Carlozzi et al., 2015) is a measure of visual

processing. On each trial, participants saw two images and judged

whether the images were the same or different. When images were

different, they varied on one of three dimensions: color, adding or tak-

ing something away, or containingmore or less of a particular item. The

standard outcomemeasure is the number of items answered correctly

in 90 s (normalized). On average, participants completed 38.96 trials

(MeanRT = 2.24 s, SD= 0.47).

Attention shifting task. TheNIH ToolboxDimensional Change Card

Sort Task is a measure of attention shifting or cognitive flexibility

(Zelazo, 2006; Zelazo et al., 2014). A white rabbit and green boat were

presented at the bottom of the screen. Participants matched a third

object to the rabbit or boat based on either color or shape. After

eight practice trials, participants completed 30 test trials alternating

between shape and color in pseudo-random order. Of these, 23 were

repeat trials (i.e., the sorting rule was the same as on the previous trial;

MeanRT = 1 s, SD = 0.36) and 7 were switch trials (i.e., the sorting rule

was different than on the previous trial; MeanRT = 1.03 s, SD = 0.39).

The standard utcome measure is a normative composite of accuracy

and RT. Formore information on the exact calculation, see Slotkin et al.

(2012).

Mental rotation task. The Little Man task (referred to in this article

as the Mental Rotation task) is a measure of visual-spatial process-

ing (Luciana et al., 2018). Participants saw a simple picture of a male

figure holding a briefcase in his left or right hand. They had to indi-

cate whether the briefcase was in the left or right hand. The image

could have one of four orientations: right side up or upside down, and

facing toward or away from the participant. Thus, on half of the tri-

als, participants had to mentally rotate the image in order to make

the decision. Participants first completed three practice trials and then

completed 32 test trials (MeanRT = 2.65, SD= 0.47). The standard out-

come measure is an efficiency measure, calculated as the percentage

correct divided by the average RT.

2.4.2 Adversity measures

Material deprivation. We assessed material deprivation with seven

items from the parent-reported ABCD Demographics Questionnaire.

These items originated from the Parent-Reported Financial Adversity

Questionnaire (Diemer et al., 2013). The items assess whether or not

(1=Yes, 0=No) the youth’s family experienced several economic hard-

ships over the 12 months prior to the assessment (e.g., ‘Needed food

but couldn’t afford to buy it or couldn’t afford to go out to get it’).

We used a previously created factor score of this measure derived

from MNLFA (Bauer, 2017). This score empirically adjusts for mea-

surement non-invariance across sociodemographic characteristics and

creates person-specific factor scores that enhance measurement pre-

cision and individual variation (Curran et al., 2014). In short, MNLFA

scores assume a common scale of measurement across groups and

age, as well as adjust for measurement biases that would have other-

wise biased our substantive analyses. DeJoseph et al. (2022) describe

how this score was computed. Higher scores indicate more material

deprivation.

Household threat. We assessed threat experienced in the youth’s

home using the Family Conflict subscale of the ABCD Family Environ-

ment Scale (Moos, 1994; Zucker et al., 2018). The subscale consisted of

nine itemsassessing conflictwith familymembers (e.g., ‘We fight a lot in

our family’). Items were endorsed with either 1 (True) or 0 (False). Two

items were positively valenced and were therefore reverse-scored.

Similar to material deprivation, we used a previously-created factor
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score of this measure derived from MNLFA (DeJoseph et al., 2022).

Higher scores indicatemore threat exposure.

Sociodemographic covariates. Several sociodemographic covari-

ateswere included in the SEMmodels (see PrimaryAnalyses) that used

the MNLFA scores representing material deprivation and household

threat exposure. This is because MNLFA scores are adjusted for these

covariates. Thus, it is recommended that variation in these covariates

is also adjusted for in dependent variables (Bauer, 2017).

We calculated income-to-needs ratios by first taking the average

of each binned income (<$5000, $5000–$11,999, $12,000–$15,999,

$16,000–$24,999, $25,000–$34,999, $35,000–$49,999, $50,000–

$74,999, $75,000–$99,999, $100,000–$199,999, ≥$200,000) as a

rough approximation of the family’s total reported income. Then we

divided income by the federal poverty threshold for the year at which

a family was interviewed (range = $12,486–$50,681), adjusted for

the number of persons in the home. We used highest education (in

years) out of the two caregivers (or one if a second caregiver was

not provided) as a continuous variable. We collapsed youth race into

four levels (White, Black, Hispanic, Other) and subsequently dummy-

coded with White (the most numerous racial group) serving as the

reference category in all models. We dichotomized youth sex such

that 1 = Female and 0 = Male. We used youth age (in months) as a

continuous variable and centered on themean.

2.5 Analysis pipeline

2.5.1 Primary analyses

The approved Stage 1 Protocol for this manuscript can be found on

theOpen Science Framework (https://osf.io/4n8qr). Before conducting

analyses, we split the full sample up in a training set (n = 1,500) and a

test set (n≈8,500).Weconductedourmain analyses in three steps (see

Figure 2): (1) fitting the DDM to the cognitive task data; (2) fitting the

SEMmodel to the adversity and DDM data and optimize it where nec-

essary based on the training set; (3) refitting themodel to the test data

and interpret the regression coefficients. We conducted a simulation-

based power analysis based on the main SEM model (see Figure S2),

with standardized regression coefficients of 0.06, 0.08, and 0.1 and the

alpha level set to 0.05. The analysis indicated that wewould havemore

than 90%power for all regression pathswithN between 2500 (β= 0.1)

and 6500 (β= 0.06).

All analyses were conducted in R 4.2.1 (R Core team, 2021).

The source code can be found on the Github repository (https://

stefanvermeent.github.io/abcd_ddm/scripts/README.html).

Step 1: DDM estimation. The DDMwas fit to each cognitive task in

a hierarchical Bayesian framework which estimates DDM parameters

both on the individual and group level (Vandekerckhove et al., 2011;

Wiecki et al., 2013). We used code provided by Johnson et al. (2017).

The benefit of this approach is that group-level information is lever-

aged to estimate individual-level estimates. This differs from classic

DDM estimation approaches where the model is fitted to the data of

eachparticipant separately (Voss et al., 2013). This is particularly useful

in developmental samples like the ABCD dataset which have a limited

number of trials per participant but substantially larger sample sizes

than is typical in the DDM literature.3

All models freely estimated the drift rate, non-decision time, and

boundary separation while constraining response bias to 0.5 (i.e.,

assuming no bias toward a particular response option). For the Flanker

and Attention Shifting Task, we compared model versions that sepa-

rately estimated drift rate and non-decision-time per task condition or

collapsed across conditions. Boundary separation was constrained to

be the same across conditions. For the Processing Speed Task and the

Mental Rotation Task, we estimated DDM parameters across all trials.

The best-fitting model of each task was used to estimate participant-

level DDM parameters. See the supplement for more information

about model fitting procedures.

Step 2: Model optimization in training set. We first estimated and

(where necessary) optimized the SEM in the training set using the

lavaan package (Rosseel, 2012). The goal of this step was to investi-

gate whether we needed to adjust the model specification in any way

(e.g., add residual correlations, introduce or reduce constraints of fac-

tor loadings, etc.) to achieve good model fit. For this reason, the model

fitted in this step was not interpreted to address our research aims.

See Figure 3 for the a-priori specification of the model. In the

measurement model, all three DDM parameters across all tasks (i.e.,

drift rates, non-decision times, and boundary separations) loaded on

separate latent factors for each parameter type. Unique (residual)

variances of the manifest (i.e., measured) DDM parameters were cap-

tured in additional latent factors (one per parameter). The structural

model estimated regression paths going from each adversity mea-

sure (see Adversity measures) to the general latent factors and to

the unique variances of the DDM parameters of each task. For model

identification reasons, we did not estimate regression paths to the

unique variances of the Processing Speed Task. We first estimated

and optimized the measurement models separately for each diffu-

sion model parameter, which allowed us to efficiently detect sources

of potential badness of fit. Once measurement models provided an

adequate account of the data, we integrated them into the struc-

tural model shown in Figure 3. In addition, clustering of siblings and

twinswithin familieswas accounted for using the lavaan.surveypackage

(Oberski, 2014). Finally, the sociodemographic covariates that were

included in theMNLFA scores (seeMeasures section above) were con-

trolled for in the SEM. Goodness-of-fit was assessed using the root

mean square error of approximation (RMSEA) and the comparative fit

index (CFI). Following Hu and Bentler (1999), CFI values >0.90 and

RMSEA values<0.08were interpreted as acceptablemodel fit and CFI

values>0.95 and RMSEA values≤0.06 as goodmodel fit.

Step 3: Model validation in test set. After optimizing the model

based on the training set, we refit it to the test data. Model fit was

assessed the samewayas at Step2. The regression coefficients of these

models were interpreted to address our research questions. We con-

trolled for multiple testing in the regression paths based on the false

discovery rate (Benjamini & Hochberg, 1995; Cribbie, 2007). We did

so separately for tests involving drift rates, non-decision times, and

boundary separations, aswehaddifferent hypotheses for eachof these

https://osf.io/4n8qr
https://stefanvermeent.github.io/abcd_ddm/scripts/README.html
https://stefanvermeent.github.io/abcd_ddm/scripts/README.html
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F IGURE 2 Visual overview of the full analysis workflow. Analyses were done in two stages: (1) prior to Stage 1 submission of themanuscript
and (2) after Stage 1 in-principle acceptance. Analyses prior to Stage 1 only focused on the cognitive task data. Independent variables (i.e., threat
and deprivationmeasures) were only accessed during Stage 2 after all DDMmodels were fit, and only for the test set after themodel had been
optimized based on the training set. Data access was tracked via the GitHub repository. DDM, Drift DiffusionModel; IV, independent variable;
SEM, structural equationmodeling.

parameters. In addition,wewere interested in determining if standard-

ized effects that fell between −0.10 and 0.10 were consistent with

an actual null effect. For regression coefficients falling within these

bounds, we therefore used two one-sided tests (TOST) equivalence

testing using−0.10 and 0.10 as bounds.

3 RESULTS

3.1 Model fit

3.1.1 DDM

Based on an assessment of model fit, we selected the following good-

fitting DDM models for the substantive analysis: 1) Mental Rotation

Task, the standard model; 2) Inhibition Task, the standard model with

one set of parameter estimates across conditions; 3) Attention Shift-

ing Task, the standard model with one set of parameter estimates

across conditions; 4) Processing Speed Task, the standard model, but

with RTs < 1 s excluded to solve issues with fast outliers. See the

supplemental materials for a full overview of the DDM fitting results.

The preregistered simulation-based model fit analysis yielded four

(out of 16) correlations between observed and simulated RTs/accuracy

that fell below the 0.80 cut-off: accuracies for Inhibition (0.79), Atten-

tion Shifting (0.73), Processing Speed (0.65), and the 75th percentile of

RTs forMental Rotation (0.76). However, further analyses showed that

all correlationswere>0.80whenwe simulated 100 trials for each task,

instead of the same number of trials as the real data. This suggested

that the low correlations did not indicate bad parameter recovery,

but rather a limitation in the preregistered procedure. Therefore, we

decided against further changes to the models or the removal of data

points. We provide more details about the model fit procedure, as well

as the nature and reason of the deviation, in the supplemental materi-

als (as well as the model fit results for the preregistered and updated

approach).

Table 2 shows bivariate correlations betweenDDMparameters and

adversity measures. Both material deprivation and household threat

showed small, negative associations with drift rates across all four
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F IGURE 3 Visualization of the full structural equationmodel (SEM). Rectangles represent manifest indicators. Ellipses represent task-general
factors. Circles represent task-specific (residual) variances. bi-directional arrows represent covariances. Dashed black lines represent factor
loadings. Solid grey lines represent regression paths. The factor loadings to each of the Processing Speed Task indicators are fixed to 1. The factor
loadings of the task-specific factors are fixed to 1 and the residual variances of themanifest indicators are fixed to 0. For model identification
reasons, we do not estimate regression paths to the unique variances of the Processing Speed Task. Not shown in this Figure to improve
readability: (1) the sociodemographic covariates that are included in theMNLFA scores (seeMeasures section); (2) covariances between the
task-general factors and the task-specific factors within each task. aGeneral , Task-general boundary separation; au, Task-specific boundary
separation; AS, Attention Shifting Task; Inh, Inhibition Task;MR,Mental Rotation Task; PS, Processing Speed Task; tGeneral, Task-general non-decision
time; tu, Task-specific non-decision time; vGeneral, Task-general drift rate; vu, Task-specific drift rate.

tasks, suggesting that participants with more adversity exposure pro-

cessed information more slowly. In addition, both material deprivation

and household threat were positively associated with boundary sep-

aration (indicating more response caution) in all tasks except Mental

Rotation, although most of these correlations were very small. Finally,

material deprivation and household threat showed a small, negative

correlation with non-decision times on the Mental Rotation Task, but

not with non-decision times on the other tasks.

3.1.2 SEM

The SEM model was incrementally constructed in the training data in

order to detect any parts that might need adjustment. All parts of the

model provided an acceptable to good account of the training data

(full training model: CFI = 0.98, RMSEA = 0.04). Therefore, we did not

make any adjustments to the model before applying it to the test data

(N=9063). The fullmodel also provided a good account of the test data

(CFI= 0.98, RMSEA= 0.05).

Figure 4 presents a simplified overview of the measurement part

of the final model in the test data (excluding task-specific covariances

and regression paths involving the adversity measures). The factor

loadings of the Mental Rotation Task were low for all DDM param-

eters, suggesting that performance on this task differs substantially

from performance on the other tasks. All tasks showed a statisti-

cally significant portion of task-specific variance after accounting for

task-general effects. Task-general drift rate and task-general boundary

separation were negatively correlated (r = −0.57), while task-general

boundary separation and task-general non-decision time were pos-

itively correlated (r = 0.71). These findings show that youth who

processed information faster were less cautious in decision-making

than those who processed information more slowly, and that more

cautious youth were slower in executing non-decision processes (e.g.,

encoding, response execution) than less cautious youth. Task-specific

correlations between DDM parameters of the same tasks ranged

between r= 0.02 and r= 0.34.

3.2 Primary analysis

Our primary analysis examined to what extent household threat

and material deprivation were associated with task-specific and

task-general aspects of speed of information processing (drift

rates), response caution (boundary separations), and task prepara-

tion/execution (non-decision times). Task-general effects capture

variance shared across tasks, whereas task-specific effects capture

variance unique to specific tasks. The results are summarized in

Figure 5.

For household threat, we found a significant negative associa-

tion with task-general drift rate (β = −0.12, 95% CI = [−0.16,

−0.08], p < 0.001), indicating that participants with more exposure

to household threat processed information more slowly in general.

All task-specific drift rates were practically equivalent at different

levels of household threat.We also found a significant positive associa-

tion between household threat and task-general boundary separation

(β= 0.08, 95%CI= [0.04, 0.12], p< 0.001), indicating that participants
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TABLE 2 Bivariate correlations betweenDDMparameters andmeasures of adversity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Drift rate

1. Inh. –

2. Att. Shift. 0.43 –

3.Men. Rot. 0.27 0.30 –

4. Proc. Speed 0.31 0.39 0.19 –

Boundary separation

5. Inh. −0.28 −0.12 −0.08 −0.12 –

6. Att. Shift. −0.40 −0.36 −0.14 −0.26 0.47 –

7.Men. Rot. 0.00 0.01 0.29 −0.05 0.06 0.09 –

8. Proc. Speed −0.29 −0.23 −0.11 −0.28 0.33 0.42 0.11 –

Non-decision time

9. Inh. −0.03 0.05 −0.00 0.02 0.52 0.33 0.05 0.23 –

10. Att. Shift. −0.07 0.02 −0.05 −0.02 0.34 0.21 0.03 0.20 0.40 –

11.Men. Rot. 0.15 0.21 0.27 0.12 0.08 0.01 0.14 0.04 0.19 0.16 –

12. Proc. Speed −0.07 −0.02 −0.07 0.01 0.26 0.20 0.02 0.12 0.28 0.30 0.16 –

Adversity

13.Mat. Dep. −0.19 −0.23 −0.21 −0.11 0.06 0.14 −0.08 0.11 −0.00 0.00 −0.14 −0.02 –

14. Househ. Thr. −0.12 −0.15 −0.10 −0.10 0.02 0.06 −0.03 0.07 −0.03 −0.02 −0.08 −0.02 0.26 –

Mean 2.91 1.49 0.25 1.47 2.95 2.12 2.88 2.89 0.34 0.33 1.15 1.22 0.05 −0.06

SD 0.87 0.39 0.26 0.38 0.41 0.45 0.44 0.47 0.08 0.08 0.28 0.14 1.05 0.83

Skew −0.25 −0.21 0.58 0.18 −0.10 0.25 −0.49 −0.15 0.06 0.44 −0.30 −0.06 0.73 0.52

Kurtosis −0.28 0.05 0.02 −0.18 0.53 −0.13 0.28 −0.36 −0.41 −0.21 0.35 0.03 0.11 −0.57

Abbreviations: Att. Shift., Attention Shifting Task; Househ. Thr., Household Threat; Inh., Inhibition Task; Mat. Dep., Material Deprivation; Men. Rot., Mental

Rotation Task; Proc. Speed, Processing Speed Task.

F IGURE 4 Simplified overview of themeasurement part of the final SEMmodel, including standardized factor loadings, unstandardized
residual variances, and correlations between the general latent factors. Excluding task-specific residual covariances and regression paths (see
Figure 5). The rectangles represent manifest indicators. The ellipses represent latent task-general factors. The circles represent latent
task-specific factors. a, Boundary separation; AS, Attention Shifting Task; Inh, Inhibition Task; MR,Mental Rotation Task; PS, Processing Speed
Task; t0, Non-decision time; v, Drift rate.
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F IGURE 5 Results of the structural part of the SEMmodel testing the effect of household threat andmaterial deprivation on task-specific and
task-general DDMparameters. The top row plots the drift rates, themiddle row plots the boundary separations, and the bottom row plots the
non-decision times. The gray area reflects the area of practical equivalence. Hollow points indicate effects outside the area of practical
equivalence. Solid points indicate effects inside the area of practical equivalence. Standard-errors represent 95% confidence intervals. Statistical
significance (tested against zero) is indicated with significance asterisks. * p< 0.05, ** p< 0.01, *** p< 0.001.

with more exposure to household threat generally responded with

more caution. In contrast, we found a negative association between

household threat and task-specific boundary separation in the Atten-

tion Shifting Task (β = −0.07, 95% CI = [−0.11, −0.02], p = 0.013),

indicating that participants with more exposure to household threat

responded with less caution in this task. The association between

household threat and task-specific boundary separation on the Inhi-

bition Task was also significant, but fell in the region of practical

equivalence. Both task-general non-decision time and task-specific

non-decision times were practically equivalent at different levels of

household threat.

For material deprivation, the associations with task-general drift

rate, as well as with all task-specific drift rates, were not significantly

different from zero. We found evidence for practical equivalence for

task-general drift rate and the task-specific drift rates of the Inhibi-

tion Task and the Mental Rotation Task. However, we did not find

evidence for practical equivalence for the task-specific drift rate of

Attention Shifting, suggesting that participants with higher levels of

material deprivation might be somewhat slower at shifting atten-

tion. The association between material deprivation and task-general

boundary separation was neither significantly different from zero

(β = 0.07, 95% CI = [−0.00, 0.13], p = 0.091), nor practically equiv-

alent (p = 0.159). Thus, participants with more exposure to material

deprivationmight generally respondwith somewhatmore caution, but

the effect size of this relationship is likely not meaningful. All of the

task-specific boundary separations were practically equivalent at dif-

ferent levels of material deprivation. Both task-general non-decision

time and task-specific non-decision times were practically equivalent

at different levels of material deprivation.

3.3 Exploratory analysis

To situate our primary analysis in the context of the broader literature

based on raw performance measures, we decided to run a similar SEM

model based on raw performancemeasures of the four cognitive tasks.
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F IGURE 6 Exploratory analysis testing the association between household threat andmaterial deprivation on task-specific and task-general
raw performancemeasures. The gray area reflects the area of practical equivalence. Hollow points indicate effects outside the area of practical
equivalence. Solid points indicate effects inside the area of practical equivalence. Standard-errors represent 95% confidence intervals. Statistical
significance (tested against zero) is indicated with significance stars. *** p< 0.001, ** p< 0.01, * p< 0.05.

We used the measures as provided in the ABCD database (Luciana

et al., 2018). For the Processing Speed Task, the traditional raw

measure is the number of correctly completed trials. For the Mental

Rotation Task, the traditional raw measure is the percentage correct

divided by the mean response time on correct trials. For the Attention

Shifting and Inhibition Task, the traditional rawmeasure is a composite

of accuracy and RT (Slotkin et al., 2012). The model was the same

as the primary analysis, with the exception that it included only one

task-general factor. Like the primary models, the exploratory model

provided a good account of the test data (CFI= 1, RMSEA= 0.04).

The results are summarized in Figure 6. Similarly to the primary

analysis, household threat was significantly negatively associated with

task-general performance. In addition, we found a significant—but

practically equivalent—positive association between household threat

and task-specific Flanker performance. All of the other effects were

practically equivalent at different levels of adversity.

4 DISCUSSION

Our aim was to better understand how two types of adversity—

household threat and material deprivation—are associated with per-

formance differences on three tasks covering inhibition, attention

shifting, and mental rotation. First, we used DDM to distinguish

between three potential sources for performance differences: 1) the

speed of information processing (drift rates), 2) response caution

(boundary separation), and 3) the speed of encoding and response

execution (non-decision time). Second, we used SEM to investigate if

observed differences in each DDM parameter were task-general (i.e.,

shared across all tasks) or task-specific (i.e., unique to a specific task).

Negative associations between adversity and either task-general or

task-specific drift rateswould be consistentwith existing deficit frame-

works. Positive associations between adversity and task-specific drift

rateswould be consistentwith existing adaptation frameworks. In con-

trast, associations with other DDM parameters, or equivalent drift

rates, would not be consistent with either framework.

4.1 Primary findings

Our results provided some support for deficit frameworks, but not

for adaptation frameworks. Higher levels of household threat (but not

material deprivation)were associatedwith lower task-general speedof

information processing. This was consistent with deficit frameworks,

although based on previous literature, we actually expected stronger

deficit patterns for deprivation than for threat (Salhi et al., 2021;

Sheridan &McLaughlin, 2014; Sheridan et al., 2020). Inconsistent with

either deficit or adaptation frameworks, task-specific inhibition and

mental rotation abilities were intact. The only exception was the neg-

ative association between material deprivation and attention shifting,

where we did not find evidence for a significant attention shifting dif-

ference, nor for truly intact shifting. Finally, both household threat

and material deprivation led to more response caution, although the

evidence for material deprivation was weak (not significantly differ-

ent from zero, but also not practically equivalent to zero). We did not

find any differences in task-general or task-specific aspects of task

preparation and response execution.

The finding that most task-specific abilities—after accounting for

task-general processing speed—were not affected by either type of

adversity was striking in light of the existing literature. It suggests that

specific executive functions (i.e., inhibition, attention shifting, mental

rotation) of youthwithmore adversity exposurewere comparablewith

those of youth from low-adversity contexts. This is inconsistent with

previous interpretations of adversity-related performance differences
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based on raw performance measures. For example, a previous study

showed enhanced attention-shifting performance in youth with more

exposure to threat (Young et al., 2022; for similar findings with envi-

ronmental and caregiver unpredictability, see Fields et al., 2021;Mittal

et al., 2015). In addition, youth from adversity have previously been

found to perform worse on inhibition tasks (Farah et al., 2006; Fields

et al., 2021; Mezzacappa, 2004; Mittal et al., 2015; Noble et al., 2005),

and previous investigations in the ABCD study found negative associ-

ations between SES and mental rotation (Assari, 2020; Bignardi et al.,

2023).

Instead, higher levels of household threat were associated with a

lower task-general drift rate. We argue that this is likely to reflect a

slowerbasic speedof processing for three reasons. First, previous stud-

ies showed that performance on executive functioning tasks involves

basic processing speed (Frischkorn et al., 2019), with one study sug-

gesting that it may be the predominant factor explaining individual

differences on executive functioning tasks (Löffler et al., 2022). Second,

we included a simple Processing Speed Task to inform and scale each

task-general factor. Third, the drift rates of the Flanker and Attention

Shifting Task were collapsed across incongruent (switch) and congru-

ent (repeat) trials. Thus, it is likely that the task-general drift rate

accounted not only for variance related to incongruent (shift) trials,

but also for variance related to the congruent (repeat) trials, which

are generally thought to involve mostly basic processing. While we

consider the basic processing speed interpretation most likely given

these reasons, we note that others have proposed that shared variance

among executive functioning tasks predominantly reflects executive

attention, or the ability to avoid distraction and to focus and main-

tain attention (Mashburn et al., 2023; Zelazo & Carlson, 2023). More

research is warranted to test these two hypotheses against each other.

Our results align to some extent with two recent investigations.

First, Bignardi et al. (2023) conducted a study in three large datasets—

among which the ABCD study—in which they used SEM to separate

task-general variance from task-specific variance. They found that

SES was positively associated with lower task-general performance

in all datasets, but after accounting for task-general performance,

found many instances of practically equivalent performance. Interest-

ingly, they found negative associations (meaning better performance)

between SES and the Flanker and Attention Shifting Task in the

ABCDdata. Second, Young et al. (Under review) examined associations

between SES and unpredictability with performance on an achieve-

ment task battery, comparing specific subtasks to overall performance

across tasks. Similar to our findings, lower SES was associated with

lower overall performance, but with intact (or even enhanced) per-

formance on most specific subtasks, relative to the overall effect.

However, these studies did not separate cognitive abilities from other

processes such as response caution.

Household threat (and to a lesser extent material deprivation) was

also associated with more task-general response caution. Traditional

assessments could misinterpret this as impaired ability, as it slows

down responses. In contrast, task-specific response caution was lower

for the Attention Shifting and Inhibition Task (although the latter was

practically equivalent). Thus, youth with more exposure to household

threat are generally more cautious, but become less cautious specifi-

cally when processing conflicting information (i.e., distractions on the

Inhibition Task and changing task-demands on the Attention Shifting

Task). What might explain these differences? In comparing deficit and

adaptation frameworks, we focusedmainly on cognitive abilities with a

clear performance benchmark (e.g., higher drift rates reflecting better

performance). Differences in response caution reflect strategies, not

abilities (Frankenhuis et al., 2020). However, we speculate that these

findings could reflect contextually appropriate adaptive responses to

threatening conditions. Evidence across multiple species suggests that

a high probability of threat tends to increase general response cau-

tion (prioritizing accuracyover speed), to avoid costlymistakes (Chittka

et al., 2009). However, under acute threat, prioritizing speed over accu-

racy might be better (e.g., fleeing even though there was no threat).

Although the Inhibition and Attention Shifting Task did not signal

threat, they did evoke competing demands and conflicting informa-

tion. In real-life settings, such environmental cues could signal a threat,

in which case prioritizing speed over accuracy would facilitate rapid

detection and responding (Frankenhuis et al., 2016;Mittal et al., 2015).

However, as neither patternwaspreregistered,we should calibrate our

interpretations accordingly.

4.2 Strengths, limitations, and future directions

The current study has several strengths. First, the analyses were

based on the ABCD sample, a large, representative US sample. Sec-

ond, we developed a framework that can simultaneously account for

adversity-related impairments and enhancements and captures cogni-

tive processes that are more theoretically meaningful than raw scores.

Third, we usedmeasures of material deprivation and household threat

that were corrected for measurement non-invariance using MNLFA,

resulting in unbiased estimates of both dimensions of adversity.

The current study also had limitations. First, we were only able

to include three cognitive abilities (aside from processing speed) that

were compatible with DDM assumptions. This inevitably excluded

many important abilities, which limited the scope of what is captured

both in task-general and task-specific processes. Second, because of

the low number of trials per task we were unable to separately model

the task conditions of the Flanker and Attention Shifting Task. This

may have made the task-specific estimates less precise measures of

inhibition and attention shifting. Third, despite the enhanced individ-

ual variation gained from the MNLFA scores, items composing those

scores of household threat and material deprivation were binary, ask-

ing for the presence or absence of certain exposures over the last

12 months. Therefore, we were not able to account for the role

of frequency and severity of those experiences in that window (let

alone over the whole of ontogeny). Fourth, while household threat

was child-reported, material deprivation was parent-reported. Thus,

the measure of material deprivation might not have fully captured

youths’ own subjective perception, which may partly explain why

household threat was more strongly related to cognitive performance

thanmaterial deprivation.
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Future research can build on this study in a couple of ways. First, it

will be important to better understand the processes making up task-

general drift rate. To this end, future research should includemeasures

of candidate processes (e.g., basic processing speed, attention main-

tenance), ideally several measures per process to obtain good latent

estimates. In addition, neuro imaging data could be linked directly to

DDM parameters to investigate which brain networks are associated

with differences in task-general drift rates (e.g., Schubert & Frischkorn,

2020). Second, future research could aim to better understand task-

general and task-specific differences in response caution. For example,

do youth from adversity show more task-general response caution

due to performance anxiety? If so, does such anxiety interfere more

with their performance on some tasks than others? Can training pro-

grams targeting anxiety boost their performance? Third, our approach

couldbeextended tomodel developmental trajectories of the cognitive

processes as a function of adversity.

Our approach of combining DDM and SEM can also enrich perspec-

tives that promote using culturally sensitive assessments of executive

functioning that relate better to youths pre-existing goals, values, and

lived experiences (Doebel, 2020; Miller-Cotto et al., 2022; Niebaum

& Munakata, 2023; Nketia et al., 2023; Zuilkowski et al., 2016; also

see Zelazo & Carlson, 2023). We agree that more ecologically rele-

vant assessments are needed, but, to the extent that they also rely

on response times and accuracy, will suffer from some of the same

methodological limitations as traditional tasks. This is exemplified

by recent attempts to make task-content more ecologically relevant.

While promising, the effects are sometimes difficult to interpret, with

different types of content affecting performance in unexpected and

inconsistent ways—in some cases helping and in others hindering per-

formance. For instance, testing materials involving money can help

to close achievement gaps on working memory tasks (Young et al.,

2022), but at the same time harm performance on mathematics exams

(Duquennois, 2022;Muskens, 2019). This couldmean that 1) the effect

of these materials on performance is task or domain-specific, and 2)

that specificmanipulations can have different—even opposing—effects

depending on the relevant process. Our approach offers a crucial tool

to systematically unpack these differences and to understand how

interventions can be best tailored to a child’s unique circumstances

given a particular cognitive domain.

4.3 Conclusion

Taken together, we find that adversity is mostly associated with task-

general processes, as well as ability-irrelevant response caution, yet

that task-specific abilities are mostly intact. This suggests that tradi-

tional cognitive assessments may overestimate the effect of adversity

on youth’s specific abilities (both impairments and enhancements). Our

analytical approach provides a solution. By combining DDM and SEM

approaches, we can start to develop a more nuanced understanding

of how adversity affects different aspects of cognitive performance

among youth and across development. This approach requires large

datasets containing multiple cognitive tasks, a requirement that is

increasingly feasible with the availability of large, secondary datasets

in developmental science (Kievit et al., 2022). Thus, we can develop a

more balanced, well-rounded understanding of how adversity shapes

cognitive development that integrates both deficit and adaptation

perspectives.
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ENDNOTES
1A fourth DDM parameter, the starting point (z), represents an initial bias

toward one of the two decision options (e.g., a tendency to classify facial

expressions as angry that extends to neutral faces). Note that allowing

the starting point to vary only makes sense if response options differ in

valence (e.g., happy and angry faces, which the current study does not

include and thus is unable to examine).
2The preregistration also included the Picture Vocabulary Task. However,

after accessing the data we realized that this task was implemented using

computerized adaptive testing (Luciana et al., 2018). This makes it unsuit-

able for DDM, as the model assumes the level of difficulty is the same

across trials.
3We ran parameter recovery studies simulating the data for the Inhibition

Task, which has the lowest overall number of trials. Parameter recovery

was excellent for the scenario that we planned in our main analyses (all rs
≥ 0.84). See the supplemental materials for more details.
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