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General introduction






General introduction

The field of adversity research is rapidly evolving. Researchers have long been studying
the ways in which exposure to adversity impairs cognitive abilities of all sorts, which
has led to a proliferation of deficit perspectives. In recent years, however, a growing
number of researchers have shifted their attention towards strength-based perspec-
tives. These perspectives highlight the skills, strategies, and knowledge that people may
develop in response to adverse experiences. One area in particular that has seen an
increase in strength-based thinking is research on executive functioning (EF), which
refers to a set of abilities involved in planning, reasoning, and goal-directed behavior.

The next generation of adversity researchers should consider how cognitive
deficits and strengths operate alongside each other within the same individual. Studies
to date show that people living in adversity will likely exhibit a mix of lower perfor-
mance in some areas and improved performance in other areas. However, adversity
researchers still tend to test deficit and strength-based hypotheses in relative isolation,
focusing mainly on one or the other. This has limited a fuller integration of the two per-
spectives, and therefore prevents a more well-rounded understanding of how adver-
sity shapes cognition. In this dissertation, I will use methodological tools—grounded
in mathematical and cognitive psychology—to improve this understanding.

In this chapter, | will first provide an overview of the current state of the field of
adversity research, with a special focus on EF. Next, [ will discuss methodological issues
that limit a fuller understanding of how adversity both lowers and enhances EF. Specif-
ically, I will focus on issues with using standard performance measures as direct mea-
sures of EF ability, and explain how cognitive modeling can provide a solution. Finally,
[ will present an overview of the aims of this dissertation, and the focus of subsequent
chapters.

.1 Current state of the field of adversity research

Exposure to adversity is associated with cognitive deficits

Decades of research have shown that people who experience more adversity—i.e., pro-
longed exposure to intense stress (for instance, due to violence, deprivation, unpre-
dictability)—tend to score lower on standard cognitive tests (Hackman et al., 2010;
Ursache & Noble, 2016a). This lower performance has been documented for a wide va-
riety of cognitive abilities, ranging from executive functioning, social cognition, mem-
ory, language, to intelligence (Farah et al., 2006; Sheridan et al., 2022; Sheridan &
McLaughlin, 2014). Such findings have led to the proliferation of deficit models, which
attribute lower performance in people from adversity to impairments in brain struc-
ture and function that undermine social and cognitive abilities (Algarin et al., 2017;
Duncan et al,, 2010; Farah et al., 2006; Nelson et al., 2020; Nelson & Gabard-Durnam,
2020; Polavarapu & Hasbani, 2017; Rebello et al., 2018; Shonkoffetal,, 2012; Ursache &
Noble, 2016b). Insights derived from deficit models have informed policy and practice
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for decades, which have improved the lives of millions of people (Blair & Raver, 2014;
Deming, 2009; Duncan et al,, 2017; Durlak et al., 2011; Reynolds et al., 2019; Ursache
& Noble, 2016a).

Exposure to adversity is associated with cognitive adaptations

In contrast to deficit frameworks, adaptation frameworks suggest that exposure to ad-
versity could also be associated with intact or even enhanced cognitive abilities. Specif-
ically, people may develop cognitive abilities that help solve unique challenges posed
by adverse environments (Ellis et al., 2017, 2022; Frankenhuis, Young, et al., 2020;
Frankenhuis & Weerth, 2013). In adaptation frameworks, the term enhanced refers to
an ability that has been improved by developmental adaptation, in a way that can be
objectively measured (e.g., faster responses, higher accuracy; Frankenhuis, Young, etal,,
2020). Intact abilities are abilities that are neither enhanced nor impaired by adversity.
Cognitive adaptations could lead to intact rather then enhanced abilities, for instance,
when performance is also negatively influenced by other deficits (Frankenhuis, Young,
etal, 2020; Young et al., 2024).

An important assumption of adaptation frameworks is that specific types of ad-
versity pose their own unique challenges to the individual, and hence require different
adaptations (Ellis et al., 2022; Frankenhuis et al.,, 2016; Frankenhuis & Weerth, 2013).
Therefore, testing adaptation hypotheses requires specificity; measures that combine
different types of adversity—such as cumulative adversity scores—might not be asso-
ciated with cognitive enhancements. Contemporary dimensional models of adversity
posit that different adversities can be broadly clustered into threat (physical or psy-
chosocial harm), material deprivation (low quantity and quality of material resources),
and environmental unpredictability (stochastic variation in adversity, i.e., threat and
deprivation, over space and time) (Ellis et al., 2009; McLaughlin et al,, 2021; Salhi et al,,
2021). Each of these dimensions captures a variety of specific exposures. For instance,
exposure to threat may include living with an abusive parent, experiencing high levels
of crime in one’s neighborhood, or witnessing or participating in fights. Despite this
variety, research shows that adversity exposures of the same dimension tend to have
similar effects on social and cognitive development, and that their effects are (partially)
distinct from effects of other dimensions (Sheridan et al.,, 2020). Following this work,
recent studies have investigated which dimensions of adversity, if any are associated
with enhancements in specific EF abilities.

Developmental adaptations in executive functioning

Adaptation frameworks have sparked a number of studies investigating the develop-
ment of cognitive abilities in adverse environments (for a review, see Ellis et al., 2022).
Several of these have focused on three core components of EF (Karr et al., 2018; Miyake
etal, 2000; Zelazo et al., 2013): (1) attention shifting, i.e., efficiently switching between
different tasks, (2) working memory updating, i.e., keeping track of changing informa-
tion in working memory, and (3) inhibition, i.e., ignoring distractions. This line of re-
search hypothesizes that attention shifting and working memory updating are partic-
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ularly useful abilities in unpredictable and threatening environments. The rationale is
that: (a) attention shifting facilitates detecting sudden threats and taking advantage of
fleeting opportunities, and (b) working memory updating facilitates tracking changes
in the environment. On the other hand, inhibition could actively interfere with detect-
ing and tracking changes in one’s environment (Fields et al., 2021; Mittal et al., 2015;
Young et al., 2018). Thus, adaptation perspectives predict enhanced performance on
attention shifting and working memory updating tasks (in contrast to deficit frame-
works), but predict lower performance on inhibition tasks (similar to deficit frame-
works).

Several studies have obtained support for adaptation hypotheses, although results
are sometimes mixed. Some studies found that exposure to unpredictability (Fields et
al, 2021; Mittal et al.,, 2015; Young et al., 2022) and violence (Young et al.,, 2022) are
positively associated with attention shifting (for counter-examples, see Mezzacappa,
2004; Nweze et al,, 2021; Rifkin-Graboi et al., 2021). Two studies found that exposure
to unpredictability (Young et al., 2018) and violence (Young et al., 2022) are positively
associated with working memory updating. Finally, exposure to different types of ad-
versity, as well as lower socioeconomic status (which is correlated with, but not the
same as adversity exposure), have been found to be negatively associated with inhibi-
tion (Farah et al., 2006; Mezzacappa, 2004; Mittal et al., 2015; Noble et al., 2005; Rifkin-
Graboi et al,, 2021). Collectively, these results suggest that exposure to adversity does
not uniformly negatively affect EF abilities, but that associations may differ for specific
EF abilities.

Integrating deficit and adaptation frameworks

Deficit and adaptation frameworks are generally considered complementary; within
the same person, exposure to adversity could impair some abilities, while enhancing
others (Frankenhuis, Young, et al, 2020). However, their integration is still limited.
For instance, it is largely unclear which specific abilities may be impaired and which
ones may be enhanced by specific types of adversity, and how deficit and adaptation
processes may operate alongside each other within the same person. In addition, disen-
tangling deficit and adaptation processes can often be challenging. For example, adap-
tations in specific abilities may co-occur with general disruptions in brain architecture
and neural efficiency due to chronic stress (Shonkoff et al., 2012). As I will argue in the
next section, one major methodological challenge limiting a further integration is that
both frameworks tend to infer differences in cognitive abilities based on raw perfor-
mance scores, such as average response times and error rates.

1.2 Different reasons for lower performance on EF tasks

Performance on EF tasks is often used as a direct proxy for EF ability, but differences in
performance do not necessarily reflect differences in ability. The reason why becomes
clear when looking at their dictionary definitions. Performance is defined as the exe-

13
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cution of an action (Merriam-Webster, 2024b). In the context of EF tasks, performance
may refer to the speed or accuracy of a person’s responses to the task. Ability is de-
fined as the natural aptitude for, or acquired proficiency in doing something (Merriam-
Webster, 2024a). In the context of EF tasks, this concerns the aptitude for, or acquired
proficiency in solving the challenge posed by the task. For performance to equal ability,
it is important that the ability is the only factor (or at least a very substantial factor)
determining how actions are executed on EF tasks.

However, research in cognitive psychology shows that performance on EF tasks
is influenced by cognitive processes other than the specific EF ability that is often of
primary interest. Examples of these other processes—discussed in more detail below
—are a person’s level of response caution, speed of response execution, and general
processing speed. This means that two people with the same EF ability level could dif-
fer in their performance if, for instance, one of them responds more cautiously than the
other (i.e., prioritizing accuracy over speed). These emerging findings, and their impli-
cations, have so far mostly been overlooked in adversity research. Given this, long-held
assumptions about how adversity affects executive functions could be oversimplified
or even misguided.

A brief case-study

To illustrate the limitations of raw performance scores, imagine a child from a disad-
vantaged background, let’s call her Yara, who is struggling in school. Yara is selected
by a screening program designed to proactively identify children who need additional
support. The screening includes a brief battery of EF tasks. The results reveal that Yara’s
response times are below average on nearly all tasks, with particularly low scores on
tasks assessing inhibition and working memory. The screening program concludes that
Yara has deficits in multiple cognitive abilities. To help her thrive in school, it is recom-
mended that she receive targeted interventions aimed at strengthening her EF, partic-
ularly focusing on inhibition and working memory. These interventions might involve
cognitive training exercises, tutoring, or behavioral strategies to help her focus and bet-
ter manage her impulses.

Are these recommendations justified? Perhaps, but, as [ will show in the following
sections, there are alternative explanations for Yara’'s lower performance that should
be considered. First, Yara may be slower not because of lower EF ability, but because
she uses a different strategy than other children, which could affect her performance.
For instance, her responses may be more cautious, sacrificing speed to achieve a higher
level of accuracy. Second, lower performance across tasks could be driven by a single
process common to all tasks, rather than reflecting deficits in specific cognitive abili-
ties. Both issues can give rise to a performance-ability gap, meaning that Yara’s raw
performance on EF tasks might not accurately reflect her true EF abilities. In the next
sections, I will outline the issues with raw performance scores as proxies of cognitive
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ability, and explain how adversity research can address these issues by building bridges
with mathematical and cognitive psychology.

Limitations of raw performance scores

Research often relies on raw performance scores as a proxy for cognitive abilities.
Most often these are response times (i.e., the total time taken to complete a task) and
accuracy (i.e.,, whether the decision made is correct or incorrect). Although there are
exceptions, researchers generally focus on one over the other, and these practices can
differ between tasks. For instance, performance on inhibition tasks tends to be sum-
marized using the average response time, while performance on working memory up-
dating tasks tends to be summarized using the overall error rate (Bastian et al., 2020).
For simplicity, I will mostly focus on response times in this section. However, the same
arguments generally also apply to accuracy.

The use of response times is based on the assumption that cognitive operations
involve multiple distinct processes, each of which takes time to complete (Donders,
1869). When any of the processes in the chain takes longer to complete, this results
in an increased response time. This is also the basic rationale behind commonly used
difference scores, where the mean response time of one condition is subtracted from
the mean response time of another condition (Donders, 1869). For instance, many EF
tasksinclude a condition with lower processing demands (e.g., trials on the Stroop Task
where the color matches the printed word) and a condition requiring the same pro-
cessing demands plus an additional processing demand (e.g., trials on the Stroop trials
where the color does not match the printed word). As the conditions are assumed to
differ only in terms of the added processing demand, a difference score is thought to
isolate the speed of that specific process.

The problem with these approaches is that the use of response times is not based
on a formally defined model of how the cognitive system works. Response times are
assumed to reflect several cognitive processes, but these processes are treated largely
as a black box. This leads to a reverse-inference problem when using response times to
infer cognitive ability: just because a lower ability leads to slower response times, does
not mean that slower response times reflect lower ability (White & Kitchen, 2022).
Common approaches to account for other processes, such as difference scores, have
been shown to be insufficient (Miller & Ulrich, 2013). For instance, analyses based on
response times fail to account for speed-accuracy trade offs: Some people may take
longer to complete a task because they prioritize accuracy over speed, not because they
process information more slowly (Bogaczetal., 2010; Van Veen et al., 2008). If adversity
exposure is associated with changes in these other processes, the resulting difference
in performance could be misattributed to their cognitive abilities.
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1.3 From performance to cognitive processes: Computational models of
cognition

Cognitive modeling offers a fruitful way to bridge the gap between raw performance
scores and EF ability (Guest & Martin, 2021; Patzelt et al., 2018). Cognitive models are
formalized, mathematical accounts of cognitive processes. They make explicit assump-
tions about the (unobserved) cognitive processes that give rise to differences in raw
performance, and formalize these assumptions in mathematical language. The result is
one or more model parameters that represent distinct cognitive processes. By applying
a cognitive model to empirical performance data, we can generate parameter estimates
that best explain key patterns in the data. These parameter estimates can then be used
as measures of cognitive processes, and subsequently as predictors or outcomes of in-
terest.

Figure 1.1 shows how a workflow based on cognitive modeling differs from one
based on analyzing raw performance. Performance-based workflows infer cognitive
abilities either directly from raw performance scores (e.g., mean response time), or by
calculating the difference in performance between an experimental and a control con-
dition. Thus, these approaches assume that response times directly reflect the ability of
interest. In contrast, a cognitive modeling workflow provides an explicit mathematical
account of how performance is shaped by a collection of cognitive processes. Adversity
research can use cognitive models to obtain direct measures of the cognitive processes
involved in EF tasks, and to investigate if and how they are associated with adversity
exposure.

Cognitive models of decision-making

Most common EF tasks require some kind of binary decision-making: deciding whether
an arrow points left or right, classifying a geometric shape either in terms of its color or
shape, or deciding whether the currently presented letter is the same as the one pre-
sented earlier. These decisions usually have to be made under time pressure, meaning
that people have to balance being fast with being accurate. Cognitive models of deci-
sion making explain how people make these kinds of decisions, and how they balance
demands on speed and accuracy. In cognitive psychology, these models have proven
their usefulness for explaining performance on EF tasks relative to raw performance
measures (Frischkorn etal.,, 2019; Hedge et al., 2022; Loffler et al., 2024). For adversity
research, they could similarly prove useful in better understanding why people with
more exposure to adversity sometimes perform lower, and sometimes perform higher.

Drift Diffusion Model

One of the most well-validated and successful models of decision-making is the Drift
Diffusion Model (DDM; Forstmann et al.,, 2016; Ratcliff & McKoon, 2008; Ratcliff &
Rouder, 1998; Wagenmakers, 2009). The DDM accounts for the cognitive processes that
give rise to patterns of RTs and error rates (Ratcliff et al., 2015). It models decision-
making as an evidence accumulation process, in which people repeatedly sample in-
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Figure 1.1. Workflow based on raw performance (top) versus workflow based on cognitive mod-
eling (bottom).

formation until they have sufficient information to favor one response option over the
other (see Figure 1.2). Evidence accumulation is modeled as a random walk process,
which drifts towards one of two decision boundaries, usually corresponding to the cor-
rect or incorrect response’. When the evidence accumulation process reaches one of
the two decision boundaries, the response is initiated. The DDM also accounts for the
time that it takes to encode stimulus information before evidence accumulation starts,
and the time that it takes to execute a response after a decision has been made.

Applying the DDM to trial-level RT and accuracy data yields three parameters?
that represent distinct cognitive processes. These are (1) the drift rate, (2) the bound-
ary separation, and (3) the non-decision time. Figure 1.3 shows how changes in each
DDM parameter shape performance using simulated data. Compared to a baseline for
a hypothetical participant, the Figure shows how changes in isolated DDM parameters
affect specific aspects of response time distributions.

The drift rate is the average rate across trials with which evidence accumulation
reaches the correct boundary, and measures the efficiency of evidence accumulation. A
decrease in drift rates affects performance in two ways (see Figure 1.3B). First, a lower
drift rate increases the spread in the tail of the distribution, coupled with only a small
change in the peak of the distribution. Second, it leads to an increased error rate. Thus,
people with a lower drift rate respond more slowly and commit more errors. Individual
differences in drift rates are generally considered as reflecting differences in cognitive

I/
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Figure 1.2. An overview of the Drift Diffusion Model (DDM). The DDM assumes that people sequen-
tially move through three distinct stages when completing tasks with two forced-response options. First,
in a preparation phase, people visually encode stimuli. Second, in the decision phase, people accumu-
late information favoring one decision over the other (e.g.,, whether to press the left vs. right key). Each
jagged line represents this accumulation on a single trial. Third, in the execution phase, people execute
a motor response (e.g., pressing the left vs. right key). The DDM estimates four parameters that repre-
sent four distinct cognitive processes (italicized): (1) Drift rate: the average rate of evidence accumula-
tion towards the correct decision boundary; i.e., efficiency of evidence accumulation; (2) Non-decision
time: the time spent on processes outside of the decision phase, i.e., encoding stimuli and executing
response; (3) Boundary separation: the distance between decision boundaries; i.e., response caution;
(4) Starting point: the starting point of the decision process; i.e., response bias. Figure copied from Ver-
meent et al. (2024).

ability (Loffler et al., 2024; Schmiedek et al., 2007; Voss et al., 2013). However, as dis-
cussed in section 1.4, drift rates also capture general processes (Lerche et al., 2020;
Loffler et al., 2024; Weigard et al.,, 2021).

The boundary separation is the width between the two decision boundaries, and
measures the level of response caution. An increase in boundary separation affects
performance in two ways (see Figure 1.3C). First, a larger boundary separation shifts
the peak of the distribution to the right, and also increases the spread of the distribu-
tion. Second, it leads to a reduced error rate. Thus, the boundary separation captures
the speed-accuracy trade off: a larger boundary separation leads to more accurate yet
slower responses.

The non-decision time is a combination of the speed of initial stimulus encoding
and the speed of response execution. A larger non-decision time shifts the distribution
to the right without changing the spread of the distribution and without changing the
error rate (see Figure 1.3D). Thus, people with a larger non-decision time are slower
without a change in accuracy.



General introduction

A. Baseline
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Figure 1.3. Simulated effects of changes in Drift Diffusion parameters on response time distribu-
tions. Each simulation represents a single person completing 5,000 trials. The upward histograms de-
pict response times of correct responses, and the downward histograms depict response times of in-
correct responses. Histograms in grey depict the baseline dataset, and histograms in green/red depict
datasets with changes in specific Drift Diffusion parameters. The images on the right graphically depict
the change in the corresponding parameter value (in blue). Panel A: Depicts the baseline model, with
response times and error rates simulated based on a drift rate of 2.0, a boundary separation of 1.0, and
a non-decision time of 0.3. Panel B: A lower drift rate increases the spread in the tail of the distribution
but barely changes the peak of the distribution, while increasing error rates. Panel C: A larger boundary
separation increases the spread of the distribution and shifts the peak to the right, while decreasing er-
ror rates. Panel D: A longer non-decision time shifts the distribution to the right without changing the
spread of the distribution and without changing the error rate.

In this dissertation, I focus on the DDM for three reasons. First, previous work
shows that the DDM is remarkably flexible. While it was originally developed for sim-
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ple and fast perceptual and recall tasks, recent work has applied it to a wide range of
more complex tasks with longer response windows, such as intelligence and EF tasks
(Lerche et al.,, 2020; Loffler et al.,, 2024). Second, many established EF tasks have a bi-
nary response format and therefore adhere to the key assumptions of the model. Third,
the DDM is among the most well-established models in its class, with many recent ad-
vances in software and computational approaches that make it increasingly accessible
for researchers from fields other than mathematical and cognitive psychology (e.g., D.].
Johnson et al., 2017; Vandekerckhove et al., 2011; Voss et al., 2013, 2015; Wiecki et al.,
2013; for some DDM applications in developmental and clinical contexts, see Grange &
Rydon-Grange, 2022; Thompson & Steinbeis, 2021).

1.4 Specific abilities and general processes

In the context of EF tasks, drift rates can capture specific executive functioning abili-
ties (Loffler et al.,, 2024). The reason is that a higher EF ability should lead to faster
and more accurate responses. For instance, on inhibition tasks like the Flanker task, a
person with a higher ability to ignore distractions would be faster at narrowing down
attention to goal-relevant information, and would be less likely to accidentally act on
distractions. As can be seen in Figure 1.3B, these are the exact response patterns that
are associated with an increased drift rate.

However, recent research shows that in addition to specific EF abilities, drift rates
on EF tasks also reflect task-general processing speed (Hedge et al., 2022; Lerche et al,,
2020; Loffler et al., 2024; Weigard et al., 2021). While EF abilities are specific to par-
ticular tasks, task-general processing speed affects performance across EF tasks. The
relative contributions of task-general processing speed and specific EF abilities to drift
rates can be teased apart using structural equation modeling. Specifically, task-general
processing speed can be captured by a task-general latent factor loading on drift rates
of all tasks, and specific EF abilities can be captured using task- or ability-specific latent
factors of drift rates (Figure 4). After accounting for task-general processing speed, re-
maining variance should be a more precise measure of specific EF abilities.

Research applying structural equation modeling to drift rates on EF tasks shows
that drift rates consistently form a task-general factor that accounts for a substantial
part of the variance (Frischkorn et al,, 2019; Hedge et al,, 2022; Loffler et al., 2024;
Weigard & Sripada, 2021). In fact, several studies did not find any meaningful vari-
ance associated with specific EF abilities after accounting for task-general processing
speed (Frischkorn et al,, 2019; Hedge et al., 2022; Loffler et al., 2024), although one
study found a correlation between task-general drift rate and self-reported self control,
which is related to EF (Weigard et al,, 2021). Thus, it remains an open question to what
extent traditional EF tasks are suitable measures of specific EF abilities, even when us-
ing cognitive modeling.
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Figure 1.4. Task-specific and task-general aspects of performance on EF tasks. Rectangles repre-
sent Drift Diffusion parameter estimates on (hypothetical) individual tasks. The ellipses at the top depict
general factors that account for shared variance across tasks. The ellipses at the bottom depict task-spe-
cific factors that capture residual variances, i.e., the proportion of variance in Drift Diffusion parameters
unique to a particular task after partialling out task-general variance. v = Drift rate, a = Boundary sepa-
ration, t = Non-decision time.

The influence of task-general processing speed on EF task performance is another
potential source of bias in adversity research. If adversity is negatively associated with
lower task-general processing speed, this could make it seem as if several different EF
abilities are impaired, rather than one general process. This has important implications
not just for basic science, but also for interventions. Specifically, if adversity is associ-
ated with general rather than specific processes, then interventions targeting specific
abilities (e.g, training performance on inhibition tasks) may not be effective.

1.5 Open questions for adversity research

The integration of deficit and adaptation frameworks is hindered by relying on the use
of raw performance scores (see section 1.2). In particular, the idea that performance on
EF tasks is influenced by multiple processes has two important implications for adver-
sity research. First, both deficits and adaptations could affect different processes on the
same EF task. That is, raw performance on a single task could be lowered by a deficit in
one process, while also being enhanced by an adaptation in another process. Second,
slower task-general processes, such as basic processing speed, could make it seem as
though adversity exposure lowers many different abilities, rather than a single general
process. Such task-general effects could also overshadow adaptations in specific abil-
ities, making it difficult to discover unique strengths (Bignardi et al., 2024; Young et
al,, 2024). Both limitations stand in the way of a full integration of deficit and adapta-
tion frameworks, and common practices based on raw performance scores fall short
on both counts.

Revisiting Yara’s case, a cognitive modeling analysis of her performance might re-
veal that her slower responses result from anxiety about performing the tasks, prompt-
ing her to be cautious in order to avoid making mistakes. In addition, her tendency to
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be slower across tasks may be caused by slower general processing speed. After ac-
counting for these factors, we may discover that Yara's difficulties with inhibition and
working memory specifically are smaller than initially thought. We may even find that
she has enhanced or intact abilities that remained hidden before. This would have im-
portant consequences for the nature of interventions. Instead of cognitive training ex-
ercises and behavioral strategies focused on improving specific abilities, interventions
could instead focus on finding and alleviating the source of her task anxiety, and allow-
ing her to work on tasks at her own pace. Thus, solving these methodological challenges
has important implications not just for basic science, but also for interventions.

1.6 Current aims

This dissertation has three central aims. The first aim is to uncover the cognitive
processes underlying performance differences (both lowered and enhanced) in people
exposed to adversity. Using a combination of DDM and structural equation modeling,
I will show that researchers likely overestimate deficits in specific cognitive abilities
when analyzing raw performance alone. The second aim is to investigate to what extent
performance differences on EF tasks can be attributed to ability-specific processes as
opposed to more general processes or strategies. The third aim is to show how moving
beyond raw performance towards cognitive processes can enrich the next generation
of adversity research.

1.7 Dissertation outline

The chapters in this dissertation can be read in any order. The empirical chapters
(Chapters 2-5) are based on articles that have either been published in or submitted to
peer-reviewed scientific journals. In Chapter 2, [ analyze the associations of two forms
of adversity—material deprivation and household threat—with inhibition ability, at-
tention shifting ability, mental rotation ability, and general processing speed, among a
representative sample of children from the United States. Specifically, | use DDM and
structural equation modeling to investigate which cognitive processes are associated
with adversity in 9-10 year-olds, and whether these associations are more task-gen-
eral or task-specific. In Chapter 3, I analyze the associations of two forms of adversity
—exposure to material deprivation and threat—with inhibition ability, attention shift-
ing, and general processing speed, among a representative sample of adults from the
Netherlands. As in Chapter 2, [ use DDM and structural equation modeling, but this
time including two inhibition tasks, three attention shifting tasks, and a basic process-
ing speed task, in order to estimate more precise latent ability factors. In Chapter 4,
I analyze the associations of two forms of adversity—exposure to violence and unpre-
dictability—with inhibition ability, among young adults from the United States. Across
three studies, I use the Shrinking Spotlight Model—a special version of the DDM—
which captures attention processes related to inhibition. In Chapter 5, I analyze the
associations of three forms of adversity—exposure to neighborhood threat, material
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deprivation, and unpredictability—with working memory ability, among a represen-
tative sample of adolescents and adults from the Netherlands. Specifically, I use struc-
tural equation modeling to distinguish between working memory capacity and work-
ing memory updating. In Chapter 6, I discuss the insights generated in Chapters 2-5,
and develop a roadmap for future adversity research in the context of two develop-
ments in the field: integrating deficit and adaptation frameworks, and developing more
ecologically and contextually relevant measurement instruments of EF.

1.8 Open science statement

For all empirical chapters (Chapters 2-5), I preregistered the hypotheses, design, and
analyses prior to collecting the data and/or conducting the analyses. All deviations
from preregistrations are described in the main text. The studies reported in Chapter
2 and Chapter 5 were Registered Reports. In a Registered Report, the Introduction and
Methods sections are submitted to and peer-reviewed by the journal prior to data col-
lection and/or analyzing the data (Chambers & Tzavella, 2021). The Registered Report
described in Chapter 5 was peer-reviewed through Peer Community In Registered Re-
ports, a non-commercial initiative that offers peer review of preprints outside of tradi-
tional journals (see https://rr.peercommunityin.org/PCIRegisteredReports).

For each empirical chapter, the analysis code, study materials, (synthetic) data,
and reproducible manuscript are openly available on my personal GitHub page
(https://github.com/stefanvermeent). Each chapter provides links to the respective
GitHub repositories, which were turned into user-friendly website versions. Full pro-
ject histories with timestamped milestones were generated using the projectlog R
package (Vermeent, 2023), which I developed in an attempt to optimize my Open Sci-
ence workflow. Chapter 2 is based on data from the Adolescent Brain Cognitive Devel-
opment (ABCD) Study (https://abcdstudy.org), and for that reason cannot be shared
openly on the Github Repository. The same is true for Chapter 3 and 5, which are based
on a combination of previously collected and newly collected data from the Longitudi-
nal Internet Studies for the Social Sciences (LISS) panel study (https://lissdata.org).
Researchers with an academic affiliation can apply for access to both data sets.
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Chapter 2

Cognitive deficits and enhancements in youth
from adverse conditions: An integrative
assessment using Drift Diffusion Modeling in
the ABCD study

This chapter is based on

Vermeent, S., Young, E.S., DeJoseph, M.L., Schubert, A.-L., & Frankenhuis, W.E. (2024).
Cognitive deficits and enhancements in youth from adverse conditions: An integrative
assessment using Drift Diffusion Modeling in the ABCD study. Developmental Science,
27(4), e13478. https://doi.org/10.1111/desc.13478


https://doi.org/10.1111/desc.13478

2.0 Abstract

Childhood adversity can lead to cognitive deficits or enhancements, depending on
many factors. Though progress has been made, two challenges prevent us from inte-
grating and better understanding these patterns. First, studies commonly use and in-
terpret raw performance differences, such as response times, which conflate different
stages of cognitive processing. Second, most studies either isolate or aggregate abilities,
obscuring the degree to which individual differences reflect task-general (shared) or
task-specific (unique) processes. We addressed these challenges using Drift Diffusion
Modeling (DDM) and structural equation modeling (SEM). Leveraging a large, repre-
sentative sample of 9-10 year-olds from the Adolescent Brain Cognitive Development
(ABCD) study, we examined how two forms of adversity—material deprivation and
household threat—were associated with performance on tasks measuring processing
speed, inhibition, attention shifting, and mental rotation. Using DDM, we decomposed
performance on each task into three distinct stages of processing: speed of informa-
tion uptake, response caution, and stimulus encoding/response execution. Using SEM,
we isolated task-general and task-specific variances in each processing stage and esti-
mated their associations with the two forms of adversity. Youth with more exposure to
household threat (but not material deprivation) showed slower task-general process-
ing speed, but showed intact task-specific abilities. In addition, youth with more expo-
sure to household threat tended to respond more cautiously in general. These findings
suggest that traditional assessments might overestimate the extent to which childhood
adversity reduces specific abilities. By combining DDM and SEM approaches, we can
develop a more nuanced understanding of how adversity affects different aspects of
youth’s cognitive performance.

Author contributions

All authors were involved in conceptualizing the study. SV accessed and analyzed the
data, and wrote the first draft of the manuscript. All authors provided feedback on
the manuscript.



Cognitive deficits and enhancements in youth from adverse conditions

2.1 Introduction

The effects of early-life adversity—such as growing up in poverty or experiencing high
levels of violence—on cognition are complex. There is a growing consensus that ad-
versity-exposed youth may develop not only deficits, but also strengths. For example,
studies find lowered and improved performance across different cognitive domains in-
cluding (but not limited to) executive functioning, social cognition, language, and emo-
tion (Ellis etal., 2022; Frankenhuis et al., 2016; Frankenhuis & Weerth, 2013; Sheridan
etal, 2022; Sheridan & McLaughlin, 2014). Researchers focused on one type of effect or
another acknowledge the importance of identifying both deficits and strengths. Yet, in
practice, they often focus on one at the expense of the other. To develop an integrated,
well-rounded, and nuanced understanding of how adversity shapes cognitive abilities,
research must integrate both types of effects.

Such an integration of deficit- and strength-based approaches is hampered by two
methodological challenges. First, most cognitive tasks involve different stages of pro-
cessing which are obscured when analyzing raw performance differences. This makes
it difficult to understand why cognitive performance may be lowered or improved. Sec-
ond, adversity may lower or improve performance because it affects general processes
(i.e., processes shared across many tasks) or abilities that are task-specific. In this Reg-
istered Report, we use a framework that tackles both challenges. First, we decompose
raw performance into measures of different stages of cognitive processes through cog-
nitive modeling. Second, we analyze four different tasks—tapping processing speed,
attention shifting, inhibition, and mental rotation—all of which have documented as-
sociations with adversity. Finally, we model shared (i.e., task-general) and unique (i.e.,
task-specific) factors that drive performance and investigate how they are associated
with adversity.

What do deficit and enhancement patterns mean?

Both the deficit and strength-based literature often use speeded tasks, in which par-
ticipants are usually instructed to respond as fast and accurate as possible. For exam-
ple, performing well on inhibition tasks (e.g., Flanker task, Go/No-Go Task; Farah et al,,
2006; Fields et al., 2021; Mezzacappa, 2004; Noble et al., 2005), attention shifting tasks
(e.g., Dimensional Change Card Sort; Farah et al., 2006; Fields et al., 2021; Mittal et al,,
2015; Noble etal., 2005; Nweze et al., 2021; Young et al., 2022), and stimulus detection
tasks (Farah et al., 2006; Noble et al., 2005; Pollak, 2008) requires fast and accurate re-
sponses. In practice, performance is often quantified using aggregated indices of speed
alone (e.g., RT), accuracy alone (e.g., proportion correct), or both independently (rather
than in an integrated manner).

In both the deficit and strength-based literature, task performance (indexed by

mean RTs or accuracy) is routinely equated with cognitive ability. For example, deficit-
focused studies relate slower RTs on inhibition tasks to worse inhibition ability (Farah
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et al.,, 2006; Fields et al,, 2021; Mezzacappa, 2004; Noble et al., 2005). Strength-based
studies relate faster RTs on standard attention shifting tasks to better shifting ability
(Fields etal., 2021; Mittal et al., 2015; Young et al., 2022). However, speed and accuracy
comprise more than pure ability (e.g., inhibition, attention shifting). They also mea-
sure other constructs such as response caution (e.g., more or less cautious respond-
ing), speed of task preparation (e.g., orienting attention, encoding information), and
speed of response execution. This heterogeneity creates an inferential risk, namely, if
performance differences are interpreted as differences in abilities without sufficiently
considering alternative explanations. In addition, the effect of adversity exposure may
not be limited to a single process. For example, a specific type of adversity could affect
both the speed of information processing and also shape the strategy that a person
uses. These inferential challenges have real-world implications, especially when raw
performance is used as an early screening tool to assess cognitive abilities (Distefano
etal, 2021).

One promising solution to these issues is leveraging cognitive measurement mod-
els developed by mathematical psychologists. For speeded binary decision tasks, a
well-established measurement model is the Drift Diffusion Model (DDM; Forstmann
et al,, 2016; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Wagenmakers, 2009).
The DDM integrates speed and accuracy on a trial-by-trial level to estimate cognitive
processes at different stages of the decision-making process. The DDM assumes that
people go through three distinct phases on each trial (see Figure 2.1 for a visualization).
The first phase, preparation, includes processes such as focusing attention and visually
encoding the stimulus. In the second phase, decision-making, people gather evidence
for both response options until the evidence sufficiently favors one option over the
other (explained below) and the decision process terminates. The third phase, execu-
tion, involves preparing and executing the motor response corresponding to the choice.

DDM estimates a set of parameters? for each participant that represent each phase
of the decision process (Voss et al., 2004). The drift rate (v) represents the speed of
information uptake (Schmiedek et al., 2007; Voss et al., 2013). People with a higher
drift rate are faster and make fewer errors. The non-decision time (t0) includes initial
preparatory processes (e.g., visually encoding the stimulus) and processes after the de-
cision is made (e.g.,, pressing a button). All else being equal, longer non-decision times
reflect slower information processing but without a cost nor benefit in accuracy. The
boundary separation (a) represents the distance between the two decision boundaries.
Alarger boundary separation means more information is collected before making a de-
cision. Thus, boundary separation measures response caution. In contrast to non-de-
cision time, larger boundary separation leads to slower but more accurate responses,
reflecting a speed-accuracy tradeoff.

As mentioned earlier, adversity-related raw performance differences—both low-
ered and improved performance—are typically interpreted as differences in ability
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Figure 2.1. A visual overview of the Drift Diffusion Model (DDM). The DDM assumes that decision
making on cognitive tasks with two forced response options advances through three stages. First, people
go through a preparation phase in which they engage in initial stimulus encoding. Second, people gather
information for one of two response options until the accumulation process terminates at one of the
decision boundaries. Each squiggly line represents the evidence accumulation process on a single trial.
Third, a motor response is triggered in the execution phase. The model estimates four parameters that
reflect distinct cognitive processes (printed in italic): (1) The drift rate represents the rate at which evi-
dence accumulation drifts towards the decision boundary and is a measure of processing speed; (2) The
non-decision time represents the combined time spent on task preparation and response execution; (3)
The boundary separation represents the width of the decision boundaries and is a measure of response
caution; (4) The starting point represents the starting point of the decision process and can be used to
model response biases (not considered in this study).

(e.g., inhibition, attention shifting). If these interpretations are accurate, then drift
rate would reflect these variations. That is because improved ability would result in
both decreased RTs and increased accuracy. However, if performance differences arise
through other factors—such as differences in response caution or response speed—
they would be captured by parameters other than the drift rate. Thus, disentangling the
drift rate, non-decision time, and boundary separation enhances our understanding of
how adversity exposure is associated with performance.

Are deficit and enhancement patterns task-specific or task-general?

An important caveat to interpreting task performance on any task in isolation is that
performance on most tasks relies both on shared cognitive processes and unique abili-
ties. For example, RTs on executive functioning tasks are substantially confounded with
general processing efficiency (Frischkorn et al., 2019; Lerche et al.,, 2020; Loffler et al.,
2024). Both task-specific abilities and task-general processes affect RTs and accuracy
in similar ways and are thus likely confounded in drift rates. Task-general effects cre-
ate the illusion that many different abilities are affected by adversity when in fact only
one more general process is affected. Consider research on cognitive deficits. Adversity
exposure might disrupt general cognitive processes shared across many tasks, such as
general processing speed, for example, because of its effects on brain regions that are
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involved across several cognitive abilities (Sheridan & McLaughlin, 2014). If so, studies
analyzing raw Flanker performance in isolation will find processing speed deficits but
wrongly interpret this as an inhibition deficit. Such distinctions matter for both deficit-
and strength-based approaches (e.g., does adversity impair broad domains such as ex-
ecutive functioning? Does it enhance specific abilities such as attention shifting?), as
well as for real-world interventions grounded in both approaches (e.g., school-based
interventions targeting broad domains or specific abilities).

Structural equation modeling (SEM) can disentangle task-general and task-spe-
cific processes. For example, it can estimate shared task variance with latent task-gen-
eral variables. By estimating shared variance across different tasks, we can also obtain
more precise estimates of task-specific abilities (i.e., variance unique to specific tasks).
Bignardi et al. (2024) recently applied this approach to model how socioeconomic sta-
tus (SES) is related to standard performance measures in three large data sets. They
used SEM to model the effect of SES on a general factor and task-specific residual vari-
ances. Lower SES was associated with a lower general ability, but enhanced task-spe-
cific processing speed, inhibition, and attention shifting. However, their analysis looked
at shared and unique variance using raw performance measures. Thus, it is subject to
the same limitations outlined in the previous section.

The current study

Here, we analyzed the Adolescent Brain Cognitive Development (ABCD) study data
(http://abcdstudy.org). The ABCD study is ideal because it provides a large, represen-
tative, and socioeconomically and ethnically diverse sample of 9- to 10 year-olds—an
age range characterized by rapid growth in cognitive abilities (Blakemore & Choud-
hury, 2006).

We studied two dimensions of adversity: household threat and material depriva-
tion. These forms of adversity have been widely studied in their relation to cognitive
outcomes—from both deficit and strength-based perspectives (Fields et al., 2021;
Schéfer et al,, 2022; Sheridan et al., 2022; Young et al., 2022)—and are central to con-
temporary conceptualizations of adversity (e.g., McLaughlin et al., 2021; Sheridan &
McLaughlin, 2014). Prior work has shown that cognitive deprivation is more strongly
associated with lower cognitive performance than threat exposure (Salhi et al., 2021;
Sheridan et al., 2020). Although material deprivation (as measured here) and cogni-
tive deprivation (in previous studies) are not identical, both seem related to access to
resources that support cognitive development (e.g., books in the home, formal educa-
tion). Indeed, in the ABCD sample material deprivation is highly or moderately corre-
lated with income (-.81) and education (-.56), while correlations with household threat
are lower (-.25 and -.12, respectively; DeJoseph et al., 2022). Therefore, to the extent
that the deprivation-versus-threat literature has captured ability-relevant processes,
we may expect material deprivation to be more strongly associated with lower drift
rates than threat exposure.
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We analyzed four cognitive abilities that have been studied in relation to adver-
sity. We included attention shifting because previous work has reported enhancement
of this ability in children and (young) adults with more exposure to environmental un-
predictability (based on raw performance switch costs; Fields et al.,, 2021; Mittal et al,,
2015; Young et al., 2022; but see Nweze et al., 2021). Theoretically, attention shifting
is thought to enable people to rapidly adjust to, and take advantage of, a changing en-
vironment (e.g., seize fleeting opportunities). We included inhibition because previous
research suggests that children with more adverse experiences are worse at inhibiting
distracting information (based on raw RT difference scores; Fields et al., 2021; Mezza-
cappa, 2004; Mittal etal., 2015; Tibu et al,, 2016). We included mental rotation because
previous studies have found negative associations between SES and mental rotation
ability (based on RTs and accuracy; Assari, 2020; Bignardi et al., 2024). To the extent
that these performance differences reflect differences in the respective abilities—as
they have been interpreted—they should show up in task-specific drift rates. We also
included a measure of processing speed, which was not measured in relation to adver-
sity but provided a direct measure of the type of basic processing speed that plays a
role in the other tasks. Taken together, the four tasks provided a broad assessment of
cognitive domains, which makes them well-suited for isolating task-general processes.
As all four tasks adhere to DDM assumptions, we could compare them based on the
same model parameters.

Adaptation-based frameworks predict increased task-specific drift rates. This fol-
lows from the key assumption that adversity shapes specific abilities, rather than gen-
eral cognitive processes (Ellis et al., 2022; Frankenhuis et al., 2016; Frankenhuis, Young,
etal, 2020; Frankenhuis & Weerth, 2013). Task-specific enhancement in the attention-
shifting drift rate would align with this assumption, as this ability is thought to be adap-
tive in changing environments; but enhancement in the task-general drift rate would
not. One study reports evidence suggesting that exposure to threat but not deprivation
is associated with better attention shifting (Young et al., 2022). If so, we should expect
to see higher task-specific drift rates with household threat, but not with material de-
privation. Enhanced task-specific drift rates on inhibition and mental rotation would be
unexpected yet interesting. It would constitute novel documentation of enhancements,
and would suggest that lowered raw performance reflects ability-irrelevant processes.
Finally, equivalent drift rates across adversity levels would also not be consistent with
strength-based frameworks; rather, such a pattern would suggest that abilities are in-
tact (i.e., not affected by adversity).

Deficit perspectives can accommodate both lowered task-specific and lowered
task-general drift rates. On the one hand, past work suggests that adversity impairs
specific abilities (e.g., inhibition; Farah et al., 2006; Fields et al., 2021; Mezzacappa,
2004; Mittal etal., 2015). On the other hand, there is also evidence that adversity affects
general cognitive ability (Bignardi et al., 2024)—perhaps through its broad effects on
brain regions that are involved across several cognitive abilities (Sheridan & McLaugh-
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lin, 2014). However, equivalent or enhanced drift rates, whether they be task-specific
or task-general, would not be consistent with deficit perspectives; rather, this would
suggest that abilities are intact or enhanced.

Our approach adds value in a third way besides separating drift rate from ability-
irrelevant factors and isolating task-specific and task-general effects: It allows us to
quantify cognitive deficits and enhancements separately within the same model. This
is because the task-specific and task-general estimates are statistically independent.
Thus, for instance, we may find that adversity lowers general drift rate, as well as some
task-specific drift rate (e.g., capturing inhibition), but increases other task-specific drift
rates (e.g., capturing attention shifting).

If the drift rates we observe align with previous interpretations of performance
differences as outlined above, our findings support existing theories about deficits and
enhancements. However, if not drift rates, but non-decision time or boundary separa-
tion account for the existing findings, and drift rates do not, neither deficit- or adap-
tation-based frameworks are supported. This would at a minimum invite reflection—
perhaps revision—of the evidence base for (parts of) these frameworks. At the same
time, such findings would offer clear directions for future research in this field (e.g.,
which factors explain variation in non-decision times and/or boundary separation
across levels of adversity). Thus, regardless of the specific pattern of outcomes, our
analyses contribute to an accurate and refined understanding of how early-life adver-
sity shapes cognitive abilities.

2.2 Methods

Sample

The ABCD study (http://abcdstudy.org), is a prospective, longitudinal study of approx-
imately 12,000 youth across the United States. We focused on the baseline assessment,
which has the largest collection of cognitive tasks suitable for DDM (Luciana et al,,
2018). There were four tasks: (1) Processing Speed Task (Pattern Comparison Process-
ing Speed Task), (2) Attention Shifting Task (Dimensional Change Card Sort Task), (3)
Inhibition Task (Flanker Task), and (4) Mental Rotation Task (Little Man Task). At base-
line, the study included 11,878 youths (aged between 9 and 10 years old, measured in
months) recruited across 21 sites. The study used multi-stage probability sampling to
obtain a nationally representative sample (Heeringa etal.,, 2010). Baseline assessments
were completed between September 15t 2016 and August 315t 2018 (see Garavan et al.,
2018). Our analysis sample includes 10,687 participants who had trial-level data avail-
able on all four* cognitive tasks.
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Open Science Statement

All analysis scripts, materials, and instructions needed to reproduce the findings are
available on the article’s Github repository (https://stefanvermeent.github.io/abcd_
ddm/). The raw study data cannot be shared on public repositories. Personal access to
the ABCD dataset is required to fully reproduce our analyses and can be requested at
https://nda.nih.gov.

We obtained access to the full ABCD data repository and performed initial data
cleaning and analyses prior to Stage 1 submission. However, we preprocessed cognitive
task data in isolation to prevent biasing the analyses involving independent variables.
The goal of these analyses was to assure that the pre-selected cognitive tasks adhered
to basic DDM assumptions and had the required trial-level data available in the right
format. These initial analyses were preregistered (https://stefanvermeent.github.io/
abcd_ddm/preregistrations/README.html).

To increase transparency, we developed an automated workflow (using R and Git)
to track the data files read into the analysis environment. First-time access to any data
file was automatically tracked via Git, providing an overview including the timestamp,
a description of the data, and the R code that was used to read in the data. The sup-
plemental materials provide a detailed description and visual overview of this work-
flow. An overview of the data access history is provided in the repository’s README
file (https://stefanvermeent.github.io/abcd_ddm/).

Exclusion Criteria

For the cognitive task data, we applied exclusion criteria in two steps: first, cleaning
trial-level data, and second, removing participants with problematic trial-level data
(discussed below). For both, most criteria were as preregistered, but a few deviated
from or were additional to the preregistration. The data processing steps described
below were preregistered unless noted otherwise.

First, we removed RTs of the Attention Shifting, Flanker, and Mental Rotation Tasks
that exceeded maximum task-specific RT thresholds (> 10 seconds (0.07%), > 10 sec-
onds (0.04%), and > 5 seconds (< 0.01% of trials), respectively). The Processing Speed
Task did not have a programmed time-out. Instead, we cut off responses > 10 seconds
(0.15% of trials) to remove extreme outliers. This step was not preregistered as we did
not anticipate these extreme outliers.

Next, we removed trials with: (1) RTs < 300 ms (ranging from 0.01% to 1.03% of
trials across tasks); (2) RTs > 3 SD above the participant-level average log-transformed
mean RT (ranging from 0.02% to 0.85% of trials across tasks; the same thing was done
for RTs < 3 SD on the Processing Speed Task (not preregistered) to remove several fast
outliers); (3) trials with missing response times and/or accuracy data (< 0.01% for all
tasks except Mental Rotation). We found that the response time-out of 5 seconds on
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the Mental Rotation Task led to missing responses on 10.55% of trials. This truncated
the right-hand tail of the RT distribution, which can bias DDM estimation. Therefore,
we decided to impute these values during DDM estimation instead of removing them
(see the Supplemental materials for more information).

Next, we excluded participants who (1) had suffered possible mild traumatic brain
injury or worse (n = 118); (2) showed a response bias of > 80% on a task (ranging be-
tween zero and 212; deviating from the preregistration); (3) had alow number of trials
left after trial-level exclusions, defined as < 20 trials for Mental Rotation and Attention
Shifting (n = zero and 19, respectively) and < 15 trials for Flanker and Processing Speed
(n = 64 and 34, respectively, deviating from the preregistration). Finally, we excluded
task data of several participants based on data inspection (not preregistered): two par-
ticipant with 0% accuracy on the Mental Rotation Task; two participants who showed
a sharp decline in accuracy over time on the Processing Speed Task; 49 participants on
the Attention Shifting Task who (almost) only made switches across all trials, even on
repeat trials. We also decided to include participants with missing data on one or more
tasks because our main analyses used FIML for missing data.

The final sample consisted of 10,563 participants (See Table 2.1).

Table 2.1. Descriptive statistics for the training and test set.
Training  Test

N 1500 9063
Sex (%) 48.7 47.6
Age (Mean (SD)) 19 (7.5) 119 (7.4)
Parent highest education in years (Mean (SD)) 20.3 (2.4) 20.3(2.4)
Race
White (%) 53.5 55.6
Black (%) 16.6 16.1
Hispanic (%) 16.9 15.6
Other (mixed, Asian, AIAN, NHPI) 12.9 12.7
Income-to-needs (Mean (SD)) 3.8(24) 3.7(2.4)
Measures

Cognitive Tasks

Inhibition Task. The NIH Toolbox Flanker task is a measure of cognitive control and
attention (Zelazo et al., 2014). On each trial, participants saw five arrows that were po-
sitioned side-by-side. The four flanking arrows always pointed in the same direction,
either left or right. The central arrow either pointed in the same direction (congruent
trials) or in the opposite direction (incongruent trials). Participants were instructed to
always ignore the flanking arrows and to indicate whether the central arrow is pointing
left or right. After four practice trials, participants completed 20 test trials, of which 12
were congruent (Meangr=0.84 seconds, SD = 0.28) and eight were incongruent (Meangr
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= 1.02 seconds, SD = 0.44). The standard outcome measure is a normative composite
of accuracy and RT. For more information on the exact calculation, see Slotkin et al.
(2012).

Processing Speed Task. The NIH Toolbox Pattern Comparison Processing Speed
task (Carlozzi et al., 2015) is a measure of visual processing. On each trial, participants
saw two images and judged whether the images were the same or different. When im-
ages were different, they varied on one of three dimensions: color, adding or taking
something away, or containing more or less of a particular item. The standard outcome
measure is the number of items answered correctly in 90 seconds (normalized). On
average, participants completed 38.96 trials (Meangr = 2.24 seconds, SD = 0.47).

Attention Shifting Task. The NIH Toolbox Dimensional Change Card Sort Taskis a
measure of attention shifting or cognitive flexibility (Zelazo, 2006; Zelazo et al., 2014).
A white rabbit and green boat were presented at the bottom of the screen. Participants
matched a third object to the rabbit or boat based on either color or shape. After eight
practice trials, participants completed 30 test trials alternating between shape and
color in pseudo-random order. Of these, 23 were repeat trials (i.e., the sorting rule was
the same as on the previous trial; Meangr = 1 seconds, SD = 0.36) and 7 were switch tri-
als (i.e., the sorting rule was different than on the previous trial; Meangr = 1.03 seconds,
SD = 0.39). The standard outcome measure is a normative composite of accuracy and
RT. For more information on the exact calculation, see Slotkin et al. (2012).

Mental Rotation Task. The Little Man task (referred to in this article as the Mental
Rotation task) is a measure of visual-spatial processing (Luciana et al., 2018). Partici-
pants saw a simple picture of a male figure holding a briefcase in his left or right hand.
They had to indicate whether the briefcase was in the left or right hand. The image
could have one of four orientations: right side up or upside down, and facing towards
or away from the participant. Thus, on half of the trials, participants had to mentally
rotate the image in order to make the decision. Participants first completed three prac-
tice trials and then completed 32 test trials (Meangr = 2.65, SD = 0.47). The standard
outcome measure is an efficiency measure, calculated as the percentage correct divided
by the average RT.

Adversity measures

Material deprivation. We assessed material deprivation with seven items from the
parent-reported ABCD Demographics Questionnaire. These items originate from the
Parent-Reported Financial Adversity Questionnaire (Diemer et al,, 2013). The items as-
sess whether or not (1 = Yes, 0 = No) the youth’s family experienced several economic
hardships over the 12 months prior to the assessment (e.g., ‘Needed food but couldn’t
afford to buy it or couldn’t afford to go out to get it’).

35



Chapter 2

We used a previously created factor score of this measure derived from MNLFA
(Bauer, 2017). This score empirically adjusts for measurement non-invariance across
sociodemographic characteristics and creates person-specific factor scores that en-
hance measurement precision and individual variation (Curran et al., 2014). In short,
MNLFA scores assume a common scale of measurement across groups and age, as well
as adjust for measurement biases that would have otherwise biased our substantive
analyses. DeJoseph et al. (2022) describe how this score was computed. Higher scores
indicate more material deprivation.

Household threat. We assessed threat experienced in the youth’s home using the
Family Conflict subscale of the ABCD Family Environment Scale (Moos, 1994; Zucker
et al., 2018). The subscale consisted of nine items assessing conflict with family mem-
bers (e.g.,, ‘We fight a lot in our family’). Items were endorsed with either 1 (True) or
0 (False). Two items were positively valenced and were therefore reverse-scored. Sim-
ilar to material deprivation, we used a previously-created factor score of this measure
derived from MNLFA (DeJoseph et al., 2022). Higher scores indicate more threat expo-
sure.

Sociodemographic covariates. Several sociodemographic covariates were in-
cluded in the SEM models (see Planned Main Analyses) that use the MNLFA scores rep-
resenting material deprivation and household threat exposure. This is because MNLFA
scores are adjusted for these covariates. Thus, it is recommended that variation in these
covariates is also adjusted for in dependent variables (Bauer, 2017).

We calculated income-to-needs ratios by first taking the average of each binned
income (< $5000, $5,000-$11,999, $12,000-$15,999, $16,000-$24,999, $25,000-
$34,999, $35,000-$49,999, $50,000-$74,999, $75,000-$99,999, $100,000-$199,999,
= $200,000) as a rough approximation of the family’s total reported income. Then we
divided income by the federal poverty threshold for the year at which a family was in-
terviewed (range = $12,486-$50,681), adjusted for the number of persons in the home.
We used highest education (in years) out of the two caregivers (or one if a second care-
giver was not provided) as a continuous variable. We collapsed youth race into 4 lev-
els (White, Black, Hispanic, Other) and subsequently dummy-coded with White (the
most numerous racial group) serving as the reference category in all models. We di-
chotomized youth sex such that 1 = Female and 0 = Male. We used youth age (in months)
as a continuous variable and centered on the mean.

Analysis Pipeline

Primary analyses

The approved Stage 1 Protocol for this manuscript can be found on the Open Science
Framework (https://osf.io/4n8qr). Before conducting analyses, we split the full sam-
ple up in a training set (n = 1,500) and a test set (n = 8,500). We conducted our main
analyses in three steps (see Figure 2.2): (1) fitting the DDM to the cognitive task data;
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(2) fitting the SEM model to the adversity and DDM data and optimize it where neces-
sary based on the training set; (3) Refitting the model to the test data and interpret
the regression coefficients. We conducted a simulation-based power analysis based on
the main SEM model (see Figure 2.3), with standardized regression coefficients of 0.06,
0.08 and 0.1 and the alpha level set to .05. The analysis indicated that we would have
more than 90% power for all regression paths with N between 2,500 (5 = 0.1) and
6,500 (5 = 0.06) (see Figure A1.2) .

All analyses were conducted in R 4.2.1 (Team, 2022). The source code can be
found on the Github repository (https://stefanvermeent.github.io/abcd_ddm/scripts/
README.html).

Processfanalysis ey Dwtput Mesw Dok Accessed
|Preprocess cognitive data
e
. Participant-ivel axrisions

Farrily idantifiars

= Trakfing {3 =1,500)
- =t {in = 0, 5000
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Figure 2.2. Visual overview of the full analysis workflow. Analyses were done in two stages: (1)
prior to Stage 1 submission of the manuscript, and (2) after Stage 1 in-principle acceptance. Analyses
at Stage 1 only focused on the cognitive task data. Independent variables (i.e., threat and deprivation
measures) were only accessed during Stage 2 after all DDM models had been fit, and only for the test set
after the model had been optimized based on the training set. Data access was tracked via the GitHub
repository. IV = independent variable; SEM = structural equation modeling; DDM = Drift Diffusion Model.
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Step 1: DDM estimation. The DDM was fit to each cognitive task in a hierarchi-
cal Bayesian framework which estimates DDM parameters both on the individual and
group level (Vandekerckhove et al.,, 2011; Wiecki et al.,, 2013). We used code provided
by D. ]. Johnson et al. (2017). The benefit of this approach is that group-level informa-
tion is leveraged to estimate individual-level estimates. This differs from classic DDM
estimation approaches where the model is fitted to the data of each participant sepa-
rately (Voss et al., 2013). This is particularly useful in developmental samples like the
ABCD dataset which have a limited number of trials per participant but substantially
larger sample sizes than is typical in the DDM literature. We ran parameter recovery
studies simulating data based on the Inhibition task, which has the lowest overall num-
ber of trials. Parameter recovery was excellent for the scenario that we planned in our
main analyses (all rs = .84). See the supplemental materials for more details.

All models freely estimated the drift rate, non-decision time, and boundary sepa-
ration while constraining response bias to 0.5 (i.e., assuming no bias towards a partic-
ular response option). For the Flanker and Attention Shifting Task, we compared model
versions that separately estimate drift rate and non-decision-time per task condition
or collapsed across conditions. Boundary separation was constrained to be the same
across conditions. For the Processing Speed Task and the Mental Rotation Task, we es-
timated DDM parameters across all trials. The best-fitting model of each task was used
to estimate participant-level DDM parameters. See the supplement for more informa-
tion about model fitting procedures.

Step 2: Model optimization in training set. We first estimated and (where nec-
essary) optimized the SEM in the training set using the lavaan package (Rosseel, 2012).
The goal of this step was to investigate whether we needed to adjust the model speci-
fication in any way (e.g., add residual correlations, introduce or reduce constraints of
factor loadings, etc.) to achieve good model fit. For this reason, the model fitted in this
step was not interpreted to address our research aims.

See Figure 2.3 for the a-priori specification of the model. In the measurement
model, all three DDM parameters across all tasks (i.e., drift rates, non-decision times,
and boundary separations) loaded on separate latent factors for each parameter type.
Unique (residual) variances of the manifest (i.e., measured) DDM parameters were cap-
tured in additional latent factors (one per parameter). The structural model estimated
regression paths going from each adversity measure (see Adversity measures) to the
general latent factors and to the unique variances of the DDM parameters of each task.
For model identification reasons, we did not estimate regression paths to the unique
variances of the Processing Speed Task. We first estimated and optimized the measure-
ment models separately for each diffusion model parameter, which allowed us to effi-
ciently detect sources of potential badness of fit. Once measurement models provided
an adequate account of the data, we integrated them into the structural model shown in
Figure 2.3. In addition, clustering of siblings and twins within families was accounted
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Figure 2.3. Visualization of the full structural equation model (SEM). Elipses represent task-general
factors. Circles represent task-specific (residual) variances. Dotted black lines represent covariances.
Dashed black lines represent factor loadings. Solid grey lines represent regression paths. The factor load-
ings to each of the Processing Speed Task indicators are fixed to 1. The factor loadings of the task-specific
factors are fixed to 1 and the residual variances of the manifest indicators are fixed to 0. For model iden-
tification reasons, we do not estimate regression paths to the unique variances of the Processing Speed
Task. Not shown in this Figure to improve readability: (1) the sociodemographic covariates that are in-
cluded in the MNLFA scores (see Measures section); (2) covariances between the task-general factors
and the task-specific factors within each task. PS = Processing Speed Task; AS = Attention Shifting Task;
MR = Mental Rotation Task; Inh = Inhibition Task; v = Drift rate; a = Boundary separation; t0 = Non-
decision time.

for using the lavaan.survey package (Oberski, 2014). Finally, the sociodemographic co-
variates that were included in the MNLFA scores (see Measures section above) were
controlled for in the SEM. Goodness-of-fit was assessed using the root mean square
error of approximation (RMSEA) and the comparative fit index (CFI). Following Hu &
Bentler (1999), CFI values >.90 and RMSEA values <.08 were interpreted as acceptable
model fit and CFI values > .95 and RMSEA values < .06 as good model fit.

Step 3: Model validation in test set. After optimizing the model based on the
training set, we refit it to the test data. Model fit was assessed the same way as at Step 2.
The regression coefficients of these models were interpreted to address our research
questions. We controlled for multiple testing in the regression paths based on the false
discovery rate (Benjamini & Hochberg, 1995; Cribbie, 2007). We did so separately for
tests involving drift rates, non-decision times, and boundary separations, as we had
different hypotheses for each of these parameters. In addition, we were interested in
determining if standardized effects that fell between -.10 and .10 were consistent with
an actual null effect. For regression coefficients falling within these bounds, we there-
fore used two one-sided tests (TOST) equivalence testing using -.10 and .10 as bounds.
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2.3 Results

Model fit

DDM

Based on an assessment of model fit, we selected the following good-fitting DDM mod-
els for the substantive analysis: 1) Mental Rotation Task, the standard model; 2) Inhibi-
tion Task, the standard model with one set of parameter estimates across conditions; 3)
Attention Shifting Task, the standard model with one set of parameter estimates across
conditions; 4) Processing Speed Task, the standard model, but with RTs < 1 s excluded
to solve issues with fast outliers. See the supplemental materials for a full overview of
the DDM fitting results.

The preregistered simulation-based model fit analysis yielded four (out of 16)
correlations between observed and simulated RTs/accuracy that fell below the .80 cut-
off: accuracies for Inhibition (.79), Attention Shifting (.73), Processing Speed (.65), and
the 75th percentile of RTs for Mental Rotation (.76). However, further analyses showed
that all correlations were > .80 when we simulated 100 trials for each task, instead of
the same number of trials as the real data. This suggested that the low correlations did
not indicate bad parameter recovery, but rather a limitation in the preregistered pro-
cedure. Therefore, we decided against further changes to the models or the removal
of data points. We provide more details about the model fit procedure, as well as the
nature and reason of the deviation, in the supplemental materials (as well as the model
fit results for the preregistered and updated approach).

Table 2.2 shows bivariate correlations between DDM parameters and adversity
measures. Both material deprivation and household threat showed small, negative as-
sociations with drift rates across all four tasks, suggesting that participants with more
adversity exposure processed information more slowly. In addition, both material de-
privation and household threat were positively associated with boundary separation
(indicating more response caution) in all tasks except Mental Rotation, although most
of these correlations were very small. Finally, material deprivation and household
threat showed a small, negative correlation with non-decision times on the Mental Ro-
tation Task, but not with non-decision times on the other tasks.
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Table 2.2, Bivariate correlations between DDM parameters and measures of adversity.

1 2 3 4 5 ] 7 8 9 10 11 12 13 14
Drift Rate
1. Flanker -
2. Att. Shift. 043 -
3. Men. Rot. 027 030 -
4, Proc. Speed 0.31 039 019
Boundary
Separation
5. Flanker -0.28  -012 -0.08 -D1Z2 -
6. Att. Shift. -0.40 -036 -0.14 -0.26 047 -
7. Men. Rot. 0.00 001 029 -005 006 009

8. Proc. Speed -0.29 <023 -0.11 -028 033 042 011
qlpn-l:lecision
Ime

9. Flanker -0.03 0.05 -0.00 0.02 0.52 0.33 0.05 023 -

10. Att. Shift. -0.07 0.02 -0.05 -002 034 0.21 0.03 0.20 040 -

11. Men. Rot. 015 0.21 0.27 0.12 0.08 0.01 0.14 0.04 0.19 016 -

12. Proc. Speed  -0.07  -0.02 -0.07 0.01 0.26 0.20 0.02 012 0.28 0.30 0.16

Adversity

13. Mat. Dep. -0.19  -023 -0.21 0.1 0.06 0.14  -0.08 011 -0.00 0.00 -0.14 -0.02

14, Househ, Thr.  -0.12 -015 -0.10 -010 0.02 006 -0.03 007 -0.03 -002 -0.08 -002 026 -
Mean 291 149 025 147 295 212 288 289 034 033 115 122 005 -0.06
sD 087 039 026 038 041 045 044 047 008 008 028 014 105 083
Skew -0.25 -0.21 058 018 -010 025 -049 -015 006 044 -030 -006 073 052
Kurtosis -0.28 005 002 -018 053 -013 028 -036 -041 -021 035 003 011  -057

Note: Att. Shift. = Attention Shifting: Men. Rot. = Mental Rotation; Proc. Speed = Processing Speed; Mat. Dep. = Material
Deprivation; Househ. Thr. = Household Threat

SEM

The SEM model was incrementally constructed in the training data in order to detect
any parts that might need adjustment. All parts of the model provided an acceptable to
good account of the training data (full training model: CFI = .98, RMSEA =.04). There-
fore, we did not make any adjustments to the model before applying it to the test data
(N = 9063). The full model also provided a good account of the test data (CFI = .98,
RMSEA =.05).

Figure 2.4 presents a simplified overview of the measurement part of the final
model in the test data (excluding task-specific covariances and regression paths involv-
ing the adversity measures). The factor loadings of the Mental Rotation Task were
low for all DDM parameters, suggesting that performance on this task differs substan-
tially from performance on the other tasks. All tasks showed a statistically significant
portion of task-specific variance after accounting for task-general effects. Task-general
drift rate and task-general boundary separation were negatively correlated (r=-0.57),
while task-general boundary separation and task-general non-decision time were pos-
itively correlated (r =.71). These findings show that youth who processed information
faster were less cautious in decision-making than those who processed information
more slowly, and that more cautious youth were slower in executing non-decision
processes (e.g., encoding, response execution) than less cautious youth. Task-specific
correlations between DDM parameters of the same tasks ranged between r =.02 and
r=.34.
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Figure 2.4. Simplified overview of the measurement part of the final SEM model, including stan-
dardized factor loadings, unstandardized residual variances, and correlations between the general latent
factors. Excluding task-specific residual covariances and regression paths (see Figure 2.5). The elipses
represent latent task-general factors. The circles represent latent task-specific factors. v = drift rate; a =
boundary separation; t0 = non-decision time; PS = Processing Speed Task; AS = Attention Shifting Task;
MR = Mental Rotation Task; Inh = Inhibition Task.

| PS, | Inht

Primary analysis

Our primary analysis examined to what extent household threat and material depriva-
tion were associated with task-specific and task-general aspects of speed of informa-
tion processing (drift rates), response caution (boundary-separations), and task prepa-
ration/execution (non-decision times). Task-general effects capture variance shared
across tasks, whereas task-specific effects capture variance unique to specific tasks.
The results are summarized in Figure 2.5.

For household threat, we found a significant negative association with task-gen-
eral drift rate (6 =-0.12,95% CI = [-0.16, -0.08], p <.001), indicating that participants
with more exposure to household threat processed information more slowly in general.
All task-specific drift rates were practically equivalent at different levels of household
threat. We also found a significant positive association between household threat and
task-general boundary separation (8 = 0.08, 95% CI = [0.04, 0.12], p <.001), indicating
that participants with more exposure to household threat generally responded with
more caution. In contrast, we found a negative association between household threat
and task-specific boundary separation in the Attention Shifting Task (8 =-0.07,95% CI
=[-0.11, -0.02], p = .013), indicating that participants with more exposure to house-
hold threat responded with less caution in this task. The association between house-
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Figure 2.5. Results of the structural part of the SEM model testing the effect of household threat
and material deprivation on task-specific and task-general DDM parameters. The top row plots the drift
rates, the middle row plots the boundary separations, and the bottom row plots the non-decision times.
The gray area reflects the area of practical equivalence. Hollow points indicate effects outside the area
of practical equivalence. Solid points indicate effects inside the area of practical equivalence. Standard-
errors represent 95% confidence intervals. Statistical significance (tested against zero) is indicated with
significance asterisks.

*p<.05**p<.01,***p<.001

hold threat and task-specific boundary separation on the Inhibition Task was also sig-
nificant, but fell in the region of practical equivalence. Both task-general non-decision
time and task-specific non-decision times were practically equivalent at different levels
of household threat.
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For material deprivation, the associations with task-general drift rate, as well as
with all task-specific drift rates, were not significantly different from zero. We found
evidence for practical equivalence for task-general drift rate and the task-specific drift
rates of the Inhibition Task and the Mental Rotation Task. However, we did not find evi-
dence for practical equivalence for the task-specific drift rate of Attention Shifting, sug-
gesting that participants with higher levels of material deprivation might be somewhat
slower at shifting attention. The association between material deprivation and task-
general boundary separation was neither significantly different from zero (8 = 0.07,
95% CI = [-0.00, 0.13], p = .091), nor practically equivalent (p = .159). Thus, partici-
pants with more exposure to material deprivation might generally respond with some-
what more caution, but the effect size of this relationship is likely not meaningful. All
of the task-specific boundary separations were practically equivalent at different levels
of material deprivation. Both task-general non-decision time and task-specific non-de-
cision times were practically equivalent at different levels of material deprivation.

Exploratory analysis

To situate our primary analysis in the context of the broader literature based on raw
performance measures, we decided to run a similar SEM model based on raw perfor-
mance measures of the four cognitive tasks. We used the measures as provided in the
ABCD database (Luciana et al., 2018). For the Processing Speed Task, the traditional
raw measure is the number of correctly completed trials. For the Mental Rotation Task,
the traditional raw measure is the percentage correct divided by the mean response
time on correct trials. For the Attention Shifting and Inhibition Task, the traditional raw
measure is a composite of accuracy and RT (Slotkin et al.,, 2012). The model was the
same as the primary analysis, with the exception that it included only one task-general
factor. Like the primary models, the exploratory model provided a good account of the
test data (CFI = 1, RMSEA = 0.04).

The results are summarized in Figure 2.6. Similarly to the primary analysis, house-
hold threat was significantly negatively associated with task-general performance. In
addition, we found a significant—but practically equivalent—positive association be-
tween household threat and task-specific Flanker performance. All of the other effects
were practically equivalent at different levels of adversity.

2.4 Discussion

Our aim was to better understand how two types of adversity—household threat and
material deprivation—are associated with performance differences on three tasks cov-
ering inhibition, attention shifting, and mental rotation. First, we used DDM to distin-
guish between three potential sources for performance differences: 1) the speed of in-
formation processing (drift rates), 2) response caution (boundary separation), and 3)
the speed of encoding and response execution (non-decision time). Second, we used
SEM to investigate if observed differences in each DDM parameter were task-general
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Figure 2.6. Exploratory analysis testing the association between household threat and material de-
privation on task-specific and task-general raw performance measures. The gray area reflects the area
of practical equivalence. Hollow points indicate effects outside the area of practical equivalence. Solid
points indicate effects inside the area of practical equivalence. Standard-errors represent 95% confi-
dence intervals. Statistical significance (tested against zero) is indicated with significance stars.

% p<.001,**p<.01,*p<.05

(i.e., shared across all tasks) or task-specific (i.e., unique to a specific task). Negative as-
sociations between adversity and either task-general or task-specific drift rates would
be consistent with existing deficit frameworks. Positive associations between adversity
and task-specific drift rates would be consistent with existing adaptation frameworks.
In contrast, associations with other DDM parameters, or equivalent drift rates, would
not be consistent with either framework.

Primary findings

Our results provided some support for deficit frameworks, but not for adaptation
frameworks. Higher levels of household threat (but not material deprivation) were as-
sociated with lower task-general speed of information processing. This was consistent
with deficit frameworks, although based on previous literature, we actually expected
stronger deficit patterns for deprivation than for threat (Salhi et al., 2021; Sheridan et
al,, 2020; Sheridan & McLaughlin, 2014). Inconsistent with either deficit or adaptation
frameworks, task-specific inhibition and mental rotation abilities were intact. The only
exception was the negative association between material deprivation and attention
shifting, where we did not find evidence for a significant attention shifting difference,
nor for truly intact shifting. Finally, both household threat and material deprivation led
to more response caution, although the evidence for material deprivation was weak
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(not significantly different from zero, but also not practically equivalent to zero). We
did not find any differences in task-general or task-specific aspects of task preparation
and response execution.

The finding that most task-specific abilities—after accounting for task-general
processing speed—were not affected by either type of adversity was striking in light of
the existing literature. It suggests that specific executive functions (i.e., inhibition, at-
tention shifting, mental rotation) of youth with more adversity exposure were compa-
rable with those of youth from low-adversity contexts. This is inconsistent with previ-
ous interpretations of adversity-related performance differences based on raw perfor-
mance measures. For example, a previous study showed enhanced attention-shifting
performance in youth with more exposure to threat (Young et al., 2022; for similar find-
ings with environmental and caregiver unpredictability, see Fields et al., 2021; Mittal
et al,, 2015). In addition, youth from adversity have previously been found to perform
worse on inhibition tasks (Farah et al., 2006; Fields et al., 2021; Mezzacappa, 2004;
Mittal et al., 2015; Noble et al., 2005), and previous investigations in the ABCD study
found negative associations between SES and mental rotation (Assari, 2020; Bignardi
etal, 2024).

Instead, higher levels of household threat were associated with a lower task-gen-
eral drift rate. We argue that this is likely to reflect a slower basic speed of processing
for three reasons. First, previous studies showed that performance on executive func-
tioning tasks involves basic processing speed (Frischkorn et al., 2019), with one study
suggesting that it may be the predominant factor explaining individual differences on
executive functioning tasks (Loffler et al.,, 2024). Second, we included a simple Process-
ing Speed Task to inform and scale each task-general factor. Third, the drift rates of the
Flanker and Attention Shifting Task were collapsed across incongruent (switch) and
congruent (repeat) trials. Thus, it is likely that the task-general drift rate accounted
not only for variance related to incongruent (shift) trials, but also for variance related
to the congruent (repeat) trials, which are generally thought to involve mostly basic
processing. While we consider the basic processing speed interpretation most likely
given these reasons, we note that others have proposed that shared variance among
executive functioning tasks predominantly reflects executive attention, or the ability to
avoid distraction and to focus and maintain attention (Mashburn et al., 2023; Zelazo &
Carlson, 2023). More research is warranted to test these two hypotheses against each
other.

Our results align to some extent with two recent investigations. First, Bignardi et
al. (2024) conducted a study in three large datasets—among which the ABCD study—
in which they used SEM to separate task-general variance from task-specific variance.
They found that SES was positively associated with lower task-general performance in
all datasets, but after accounting for task-general performance, found many instances
of practically equivalent performance. Interestingly, they found negative associations
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(meaning better performance) between SES and the Flanker and Attention Shifting
Task in the ABCD data. Second, Young et al. (2024) examined associations between
SES and unpredictability with performance on an achievement task battery, compar-
ing specific subtasks to overall performance across tasks. Similar to our findings, lower
SES was associated with lower overall performance, but with intact (or even enhanced)
performance on most specific subtasks, relative to the overall effect. However, these
studies did not separate cognitive abilities from other processes such as response cau-
tion.

Household threat (and to a lesser extent material deprivation) was also associ-
ated with more task-general response caution. Traditional assessments could misin-
terpret this as impaired ability, as it slows down responses. In contrast, task-specific
response caution was lower for the Attention Shifting and Inhibition Task (although
the latter was practically equivalent). Thus, youth with more exposure to household
threat are generally more cautious, but become less cautious specifically when pro-
cessing conflicting information (i.e., distractions on the Inhibition Task and changing
task-demands on the Attention Shifting Task). What might explain these differences?
In comparing deficit and adaptation frameworks, we focused mainly on cognitive abil-
ities with a clear performance benchmark (e.g., higher drift rates reflecting better per-
formance). Differences in response caution reflect strategies, not abilities (Franken-
huis, Young, et al., 2020). However, we speculate that these findings could reflect con-
textually appropriate adaptive responses to threatening conditions. Evidence across
multiple species suggests that a high probability of threat tends to increase general
response caution (prioritizing accuracy over speed), to avoid costly mistakes (Chittka
et al,, 2009). However, under acute threat, prioritizing speed over accuracy might be
better (e.g. fleeing even though there was no threat). Although the Inhibition and At-
tention Shifting Task did not signal threat, they did evoke competing demands and con-
flicting information. In real-life settings, such environmental cues could signal a threat,
in which case prioritizing speed over accuracy would facilitate rapid detection and re-
sponding (Frankenhuis etal., 2016; Mittal et al.,, 2015). However, as neither pattern was
preregistered, we should calibrate our interpretations accordingly.

Strengths, limitations, and future directions

The current study has several strengths. First, the analyses were based on the ABCD
sample, a large, representative US sample. Second, we developed a framework that
can simultaneously account for adversity-related impairments and enhancements and
captures cognitive processes that are more theoretically meaningful than raw scores.
Third, we used measures of material deprivation and household threat that were cor-
rected for measurement non-invariance using MNLFA, resulting in unbiased estimates
of both dimensions of adversity.

The current study also had limitations. First, we were only able to include three
cognitive abilities (aside from processing speed) that were compatible with DDM as-
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sumptions. This inevitably excluded many important abilities, which limited the scope
of what is captured both in task-general and task-specific processes. Second, because
of the low number of trials per task we were unable to separately model the task
conditions of the Flanker and Attention Shifting Task. This may have made the task-
specific estimates less precise measures of inhibition and attention shifting. Third, de-
spite the enhanced individual variation gained from the MNLFA scores, items compos-
ing those scores of household threat and material deprivation were binary, asking for
the presence or absence of certain exposures over the last 12 months. Therefore, we
were not able to account for the role of frequency and severity of those experiences
in that window (let alone over the whole of ontogeny). Fourth, while household threat
was child-reported, material deprivation was parent-reported. Thus, the measure of
material deprivation might not have fully captured youths’ own subjective perception,
which may partly explain why household threat was more strongly related to cognitive
performance than material deprivation.

Future research can build on this study in a couple of ways. First, it will be impor-
tant to better understand the processes making up task-general drift rate. To this end,
future research should include measures of candidate processes (e.g., basic processing
speed, attention maintenance), ideally several measures per process to obtain good
latent estimates. In addition, neuro imaging data could be linked directly to DDM pa-
rameters to investigate which brain networks are associated with differences in task-
general drift rates (e.g., Schubert & Frischkorn, 2020). Second, future research could
aim to better understand task-general and task-specific differences in response cau-
tion. For example, do youth from adversity show more task-general response caution
due to performance anxiety? If so, does such anxiety interfere more with their perfor-
mance on some tasks than others? Can training programs targeting anxiety boost their
performance? Third, our approach could be extended to model developmental trajec-
tories of the cognitive processes as a function of adversity.

Our approach of combining DDM and SEM can also enrich perspectives that pro-
mote using culturally-sensitive assessments of executive functioning that relate better
to youths pre-existing goals, values, and lived experiences (Doebel, 2020; Miller-Cotto
etal.,, 2022; Niebaum & Munakata, 2023; Nketia et al., 2024; Zuilkowski et al., 2016; also
see Zelazo & Carlson, 2023). We agree that more ecologically relevant assessments are
needed, but, to the extent that they also rely on response times and accuracy, will suffer
from some of the same methodological limitations as traditional tasks. This is exempli-
fied by recent attempts to make task-content more ecologically relevant. While promis-
ing, the effects are sometimes difficult to interpret, with different types of content af-
fecting performance in unexpected and inconsistent ways—in some cases helping and
in others hindering performance. For instance, testing materials involving money can
help to close achievement gaps on working memory tasks (Young et al., 2022), but at
the same time harm performance on mathematics exams (Duquennois, 2022; Muskens
et al,, 2019). This could mean that 1) the effect of these materials on performance is
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task or domain-specific, and 2) that specific manipulations can have different—even
opposing—effects depending on the relevant process. Our approach offers a crucial
tool to systematically unpack these differences and to understand how interventions
can be best tailored to a child’s unique circumstances given a particular cognitive do-
main.

2.5 Conclusion

Taken together, we find that adversity is mostly associated with task-general processes,
as well as ability-irrelevant response caution, yet that task-specific abilities are mostly
intact. This suggests that traditional cognitive assessments may overestimate the effect
of adversity on youth’s specific abilities (both impairments and enhancements). Our
analytical approach provides a solution. By combining DDM and SEM approaches, we
can start to develop a more nuanced understanding of how adversity affects different
aspects of cognitive performance among youth and across development. This approach
requires large datasets containing multiple cognitive tasks, a requirement that is in-
creasingly feasible with the availability of large, secondary datasets in developmental
science (Kievit et al., 2022). Thus, we can develop a more balanced, well-rounded un-
derstanding of how adversity shapes cognitive development that integrates both deficit
and adaptation perspectives.
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Chapter 3

Adversity is associated with lower general
processing speed rather than specific
executive functioning abilities

This chapter is based on

Vermeent, S., Schubert, A.-L., & Frankenhuis, W.E. Adversity is associated with lower
general processing speed rather than specific executive functioning abilities. Submit-
ted for publication. https://doi.org/10.31234/osf.io /kqhf7


https://doi.org/10.31234/osf.io/kqhf7

3.0 Abstract

Exposure to adversity may impair executive functioning (i.e., deficit frameworks), but
could also enhance, or leave intact, specific EF abilities (i.e., adaptation frameworks).
Both frameworks often use raw performance (e.g., speed) to estimate EF ability. How-
ever, this approach (1) conflates different cognitive processes, and (2) generally does
not distinguish specific EF abilities from processes that are shared across EF tasks,
such as general processing speed. Here, we integrate deficit and adaptation frame-
works by building bridges with mathematical and cognitive psychology. Specifically,
we use cognitive modeling (Drift Diffusion Modeling) to isolate different cognitive
processes: speed of information accumulation, response caution, and speed of stim-
ulus encoding and response execution. We then use structural equation modeling to
investigate whether associations between adversity and cognitive processes are task-
general or ability-specific. We recruited 1061 participants from the Dutch LISS panel.
Participants completed a basic processing speed task, two inhibition tasks, and three
attention-shifting tasks. We measured exposure to threat and material deprivation in
childhood and adulthood. Exposure to threat (but not material deprivation) in adult-
hood was negatively associated with task-general processing speed. After accounting
for task-general processes, remaining variance was not related to either inhibition or
attention-shifting ability. Non-preregistered analyses showed that childhood exposure
to material deprivation and threat were negatively associated with (1) general process-
ing speed, and (2) task-specific information accumulation. The latter reflected unique
features of individual tasks, rather than specific EF abilities. Taken together, these re-
sults suggest that adversity researchers overestimate associations between adversity
and specific EF abilities when analyzing raw performance.

Author contributions

All authors were involved in conceptualizing the study. SV accessed and analyzed the
data, and wrote the first draft of the manuscript. All authors provided feedback on
the manuscript.
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3.1 Introduction

Psychologists have used two main frameworks to explain associations between adver-
sity exposure—such as material deprivation or threat—and executive functioning (EF);
one focuses on deficits, the other on adaptation. Deficit frameworks predict that ad-
verse experiences impair brain structure and function in ways that undermine social
and cognitive abilities (Farah et al., 2006; Merz et al., 2019; Rosen et al., 2018; Ursache
& Noble, 2016a). Adaptation frameworks predict that adverse experiences can lead to
the development of intact or enhanced EF abilities, specifically those abilities useful
for solving challenges posed by adverse environments (Ellis et al., 2022; Frankenhuis,
Young, et al., 2020; Frankenhuis & Weerth, 2013).

Although the two frameworks make opposing predictions in some cases, they
share the goal to reveal how adversity influences specific EF abilities (Ellis et al., 2022;
Farah et al,, 2006; Frankenhuis, Young, et al,, 2020; D. Johnson et al., 2021). Knowledge
about impaired abilities provides valuable targets for interventions designed to bridge
achievement gaps. Conversely, knowledge about enhanced abilities can be leveraged in
school or work contexts, for instance, by redesigning learning settings to match peo-
ple’s unique strengths.

Research within both frameworks typically employs the same inferential strategy,
by estimating specific EF abilities based on raw performance on EF tasks (e.g., response
speed or accuracy). For instance, on the one hand, children who live in less favorable
environments tend to be slower and less accurate on inhibition tasks—which has been
interpreted as an impaired ability to inhibit distractions (Farah et al., 2006; Fields et
al,, 2021; Mezzacappa, 2004; Mittal et al., 2015; Noble et al., 2005). On the other hand,
some studies report that adolescents and young adults with more exposure to threat
and unpredictability might perform better at shifting their attention between differ-
ent tasks, without sacrificing much performance on each task—which may be a use-
ful adaptation for tracking information in fast changing and dangerous environments
(Fields et al., 2021; Howard et al,, 2020; Mittal et al.,, 2015; Nweze et al., 2021; Young
et al.,, 2022). In this paper, we will challenge the inferential strategy of estimating EF
abilities based on raw performance. We advocate for cognitive modeling as a viable al-
ternative approach to estimating EF abilities.

Methodological challenges for measuring specific EF abilities

Recent research shows that raw performance on EF tasks does not necessarily capture
specific EF abilities, for two related reasons. First, raw performance on EF tasks is also
influenced by processes other than the ability of interest, such as response caution and
the speed of response execution (Hedge et al., 2022; Ratcliff & McKoon, 2008; Stahl et
al,, 2014). Thus, slower (or faster) responses in people with more adversity exposure
need not reflect EF ability, but could, for instance, reflect a tendency to respond more
cautiously (Vermeent et al., 2024). Second, raw performance on EF tasks is also influ-
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enced by general processes, such as basic speed of information processing (Frischkorn
etal, 2019; Loffler et al., 2024; Weigard et al.,, 2021). Thus, lower performance on mul-
tiple EF tasks may reflect a difference in a general process, rather than specific EF abil-
ities (Bignardi et al., 2024; Vermeent et al., 2024; Young et al., 2024).

The standard inferential strategy of estimating EF abilities from raw performance
limits the effectiveness of interventions. For example, some interventions include train-
ing modules for specific EF tasks if performance on a task is below some prespecified
cut-off (Distefano et al,, 2021). Performance on inhibition tasks in particular is thought
to mediate the association between adversity exposure and achievement (Taylor &
Barch, 2022). At face value, this would suggest interventions targeting inhibition ability
(e.g., inhibition training, which might involve removing distractions from the environ-
ment) could positively impact achievement outcomes. However, if impaired inhibition
ability is not the root cause of performance differences, but rather general processes
are (such as the speed of information processing), the impact of such interventions
will likely be limited. Therefore, adversity research should move beyond the use of raw
performance to better understand the associations between adversity exposures and
specific EF abilities.

Separating EF ability from other decision-making processes

Raw performance confounds multiple stages of processing: from initial preparations
(e.g., stimulus encoding), to processing task-relevant information, to deciding on and
executing a response (Forstmann et al., 2016; Ratcliff, 1978; Wagenmakers, 2009). In-
dividual differences in response times and error rates also depend on how cautiously
people make decisions. More cautious people tend to respond more slowly to increase
their accuracy, which does not necessarily imply lower ability (Voss et al., 2004). Thus,
understanding associations between adversity and specific EF abilities requires isolat-
ing ability-relevant processing (e.g., inhibition, attention-shifting) from ability-irrele-
vant processes that contribute to response times.

Cognitive modeling can distinguish between abilities and ability-irrelevant
processes. Here, we focus on the Drift Diffusion Model (DDM; Forstmann et al., 2016;
Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Wagenmakers, 2009), which can be
applied to many widely used EF tasks. The DDM assumes that people accumulate evi-
dence for one of two responses (e.g., left or right button) until they have acquired suffi-
cient evidence to make a decision (see Figure 3.1). When applied to trial-level response
times and accuracy data, the DDM estimates four parameters that represent distinct
cognitive processes (Voss etal., 2004). The drift rate reflects the rate at which people ac-
cumulate evidence for the correct response; thus, it measures the efficiency of informa-
tion processing. A higher drift rate leads to faster responses and higher accuracy. When
applied to EF tasks, the drift rate captures individual differences in specific EF abilities
(although drift rate may also capture more general processes, see below; Loffler et al.,
2024; Vermeent et al,, 2024; Weigard et al., 2021). The boundary separation reflects
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Figure 3.1. Visual representation of the Drift Diffusion Model (DDM). The DDM assumes that peo-
ple accumulate evidence for one of two responses until they have acquired sufficient evidence to make
a decision. Each squiggly line represents the evidence accumulation process on a single trial. The thick,
horizontal lines represent the decision boundaries corresponding to the correct response (upper bound-
ary) and the incorrect response (lower boundary). Applying the DDM to trial-level performance data
(response times and accuracies) yields four parameters representing distinct cognitive processes: (1)
drift rate: Average rate of evidence accumulation across trials; measuring the efficiency of information
processing. (2) boundary separation: The distance between the two decision boundaries; measuring
response caution. (3) Non-decision time: A combination of the preparation speed (e.g., stimulus en-
coding) and response execution speed (e.g., time spent pressing the button); measuring speed of non-
decision processes. starting point: The starting point of the evidence accumulation process; measuring
response bias (not considered here). Figure adopted from Vermeent et al. (2024), licensed under CC BY
4.0.

the width between the two decision boundaries; it measures a person’s response cau-
tion. A higher boundary separation leads to slower responses and higher accuracy. The
non-decision time reflects a combination of preparation time (e.g., stimulus encoding)
as well as execution time (e.g., time spent pressing the button). A larger non-decision
time leads to slower responses without a change in accuracy. Finally, the starting-point
allows for initial bias for one of two responses (e.g., happy or angry faces). In this pa-
per, we will not consider the starting point, because people cannot have biases towards
correct or incorrect responses.

Separating EF ability from general processing speed

Recent studies show that a single general factor accounts for most of the variance in
drift rates across multiple tasks (Lerche et al., 2020; Loffler et al., 2024; Weigard et
al,, 2021). This general factor appears to be largely stable across time (Schubert et al.,
2016; Weigard et al., 2021). It arises also in analyses of tasks thought to measure dif-
ferent abilities (Schmiedek et al., 2007; Schmitz & Wilhelm, 2016). Even if all tasks are
designed to measure the same EF ability (Hedge et al., 2022), variance in the general
factor is fully explained by general processing speed instead of any specific EF ability
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(Loffler et al., 2024). These findings suggest that performance on standard EF tasks
largely reflects basic speed of processing, rather than EF abilities.

Recent findings suggest that the effects of adversity are more general than spe-
cific. For instance, youth with lower SES and more exposure to adversity show lower
task-general raw performance scores across measures of EF, memory, and intelligence,
while task-specific performance (after accounting for general variance) is often prac-
tically equivalent to zero (Bignardi et al., 2024; Young et al., 2024). In addition, youth
with more exposure to household threat showed lower task-general processing speed
(based on drift rates), while differences in task-specific drift rates were practically
equivalent to zero (Vermeent et al., 2024). These findings suggest that previous re-
search may have overestimated the associations between adversity and specific abil-
ities.

A consequence of both sources of measurement impurity is that estimating spe-
cific EF abilities requires latent variable models including two or more measures of
the same ability; yet, most studies in adversity research include only one task per EF
ability. This makes this work less suitable to investigate whether adversity is associ-
ated with specific EF abilities after accounting for general processes. This is impor-
tant for both deficit-based and adaptation-based interventions, which aim to remedi-
ate or leverage impaired or enhanced abilities, respectively. Moreover, while deficit
frameworks predict impairments in both specific abilities and general processes (Ver-
meent et al.,, 2024), adaptation frameworks predict that specific types of adversity lead
to adaptations in specific EF abilities. For example, it has been proposed that unpre-
dictable and dangerous environments may positively affect the ability to rapidly shift
attention, promoting the detection of sudden threats and seizing fleeting opportunities
(Frankenhuis, Young, et al., 2020; Mittal et al., 2015). In the current research, therefore,
we investigate the associations between adversity and two latent EF abilities—-inhi-
bition and attention shifting—-after accounting for task-general processing speed. We
will use multiple tasks for each ability to obtain better estimates of specific abilities.

The current study

Using a combination of DDM and structural equation modeling, we address three cen-
tral questions. First, what is the association of adversity exposure in adulthood with
general processing speed that is contributing to performance across all cognitive tasks?
Second, what is the association of adversity exposure in adulthood with inhibition and
attention-shifting abilities after accounting for general processing speed? Third, what
is the association of adversity exposure in adulthood with general and/or EF-specific
response caution? We focus on two types of adversity: material deprivation (a lack of
access to material resources) and threat (the potential for harm imposed by others). In
previous research, both types of adversity were associated with performance on tasks
used to measure EF (e.g., Fields et al., 2021; Schifer et al., 2022; Sheridan et al., 2022;
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Vermeent et al,, 2024; Young et al., 2022). In addition, both are central to recent dimen-
sional models of adversity (McLaughlin et al., 2021; Sheridan & McLaughlin, 2014).

We preregistered predictions of deficit and adaptation frameworks. Deficit frame-
works predict negative associations between adversity and both the general speed
of processing as well as specific abilities. Adaptation frameworks predict intact or en-
hanced attention shifting ability, but not intact or enhanced inhibition ability. We only
interpret intact attention shifting ability as an adaptation if inhibition ability is also
lower. Intact performance on both abilities, however, would not provide sufficient evi-
dence of adaptation, as it might instead suggest no association between adversity expo-
sure and these abilities. In line with previous work (Vermeent et al., 2024), we further
predict that threat exposure is associated with higher task-general response caution.

3.2 Methods

Participants

We tested a total of 1061 participants from the Dutch Longitudinal Internet Studies for
the Social Sciences (LISS) panel (Scherpenzeel, 2011). The LISS panel is an invitation-
only, representative sample of the Dutch population consisting of approximately 7,500
individuals across 5,000 households. LISS participants complete a yearly core battery
of questionnaires about various domains of life, including one’s financial situation over
the past year. In addition, LISS participants have the option to participate in further
monthly studies on different topics. We estimated power based on Kretzschmar & Gi-
gnac (2019). With « = 0.05 and assuming moderate reliability of our cognitive mea-
sures, we would have > 90% power to detect small effect sizes (8 = 0.1) with a sample
size ranging between N = 730 and N = 980. Therefore, we aimed for a total sample size
of N=1,000.

The current study took place between May and August 2024. Participants were
able to complete the cognitive tasks during two or more sessions to increase partici-
pation rates. People were eligible for the study if they were between 18 and 55 years
old, and had agreed to linking their LISS data to government microdata (not relevant
here, but for a different study). We excluded participants who did not have data on any
cognitive task. The final sample after exclusions consisted of 1056 participants (see
Table 3.1).
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Table 3.1. Descriptive statistics for the final sample.

Category Statistic
Mean age (SD) 39.3 (11.1)
Sex (% Female) 55.7
Highest completed education (%)

primary school 3

vmbo (intermediate secondary education) 11.9
havo/vwo (higher secondary education) 15.4
mbo (intermediate vocational education) 39.1

hbo (higher vocational education) 36.9

wo (university) 27.9

other 1.6

missing 3.3
Mean number of waves (SD}

Material deprivation 8.7 (4.9)

Threat 3.5(2.3)

Adversity measures

We preregistered our approach for computing adversity composite scores based on
observed correlations between measures. If all measures of an adversity type (i.e.,
material deprivation and threat) correlated .60 or higher (indicating “strong” correla-
tions, as was the case for material deprivation in adulthood), we calculated a uniformly
weighted average. If one or more correlations were lower than .60 (as was the case for
neighborhood threat in adulthood), we applied Principal Component Analysis to the
separate measures and extracted only the first principal component score. See section
1 of the supplemental materials for frequency distributions of all adversity measures.

Neighborhood threat in adulthood

Following our preregistration, we measured exposure to neighborhood violence in
adulthood using two measures of perceived neighborhood crime, and one mea-
sure of crime victimization. Participants completed the Neighborhood Violence Scale
(Frankenhuis, Young, et al.,, 2020; Frankenhuis & Bijlstra, 2018). This scale includes
seven items about current perceived neighborhood threat (e.g., “Where I live, it is im-
portant to be able to defend yourself against physical harm”), on a scale of 1 (“Com-
pletely disagree”) to 7 (“Completely agree”). These items were averaged and standard-
ized. We also included four items on perceived neighborhood threat from the LISS
archive (six waves: https://doi.org/10.17026/dans-zch-j8xt). Participants reported
how frequently they: (1) “avoid certain areas in your place of residence because you
perceive them as unsafe”, (2) “do not respond to a call at the door because you feel that
it is unsafe”, (3) “leave valuable items at home to avoid theft or robbery in the street?”,
(4) “make a detour, by car or on foot, to avoid unsafe areas?”. The scale of these four
items ranged from 1 (“(Almost) never”), 2 (“Sometimes”), to 3 (“Often”). We intended
to include these items again in the current study, but due to an oversight this did not
happen. This meant that we did not have data on these items for participants who
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never participated in any of the six waves described above (missing N = 348). We de-
cided to conduct all analyses involving threat based only on this subset of the data (N =
708), because a priori power remained above 80% (Kretzschmar & Gignac, 2019). We
summed the items within each wave, and then calculated an average across waves for
which participants had data.

We computed crime victimization in adulthood based on seven items from the LISS
archive (six waves: https://doi.org/10.17026/dans-zch-j8xt) in which participants re-
ported whether or not they had been the victim of seven types of crime in the last two
years: (1) burglary or attempted burglary; (2) theft from their car; (3) theft of their
wallet or purse, handbag, or other personal possession; (4) wreckage of their car or
other private property; (5) intimidation by any other means; (6) maltreatment of such
serious nature that it required medical attention; and (7) maltreatment that did not
require medical attention. We also included these items again in the current study, with
people answering them about the last two years. We computed the total number of dis-
tinct crimes that participants were exposed to at any moment in time (a ‘variety score’;
Sweeten, 2012).

The correlations between the two measures of perceived neighborhood crime and
crime victimization were low (see Table 3.2). Therefore, following our preregistration,
we used Principal Component Analysis to extract the first principal component score.
This score accounted for 23 % of the variance in the three measures.

Material deprivation in adulthood

We derived measures of material deprivation in adulthood from the LISS archive, using
the yearly recurring core study on household and personal income (16 waves: https://
doi.org/10.57990/1gr4-bf42). First, participants reported how difficult it currently is
to live off the income of their household, on a scale from 0 (very hard) to 10 (very easy).
Second, participants reported which of the following statements best described their
current financial situation: (1) “we are accumulating debt”; (2) “we are somewhat eat-
ing into savings”; (3) “we are just managing to make ends meet”; (4) “we have a little bit
of money to spare”; (5) “we have a lot of money to spare”. Third, participants reported
which of the following applied to their current financial situation (0 = no, 1 = yes): (1)
“having trouble making ends meet”; (2) “unable to quickly replace things that break”;
(3) “having to lend money for necessary expenditures”; (4) “running behind in paying
rent/mortgage or general utilities”; (5) “debt collector/bailiff at the door in the last
month”; and (6) “received financial support from family or friends in the last month”.
We recoded responses so that higher scores indicated more perceived scarcity.

We first reverse-coded and averaged each measure separately across waves, and
then scaled them. As all item correlations were > .60 (see Table 3.2), we computed a
uniformly weighted average.
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Cognitive measures

We programmed six cognitive tasks in jsPsych 7.3 (De Leeuw, 2015): two inhibition
tasks, three attention shifting tasks, and one basic processing speed task. At the start
of the session, participants entered fullscreen mode to avoid distractions from other
browser tabs. The tasks were presented against a light-gray background. See Section 2
of the supplemental materials for information on condition manipulation checks, split-
half reliability estimates, and bivariate correlations between tasks.

Flanker Task. This task measures inhibition of distractor interference (B. A. Erik-
sen & Eriksen, 1974). On each trial, participants saw five arrows side-by-side horizon-
tally, pointing either left or right. Their task was to indicate the direction of the central
arrow. The arrows were randomly presented 300 pixels above or below the center of
the screen. On 50% of the trials, all arrows pointed in the same direction (congruent
trials). On the other half, the arrows surrounding the central arrow pointed in the op-
posite direction (incongruent trials). Participants first completed eight practice trials,
followed by two test blocks of 32 trials each, for a total of 64 trials.

Simon Task. This task measures inhibition of prepotent responses (Simon & Wolf,
1963). On each trial, participants saw the word “LEFT” or “RIGHT” (printed in Dutch),
presented either on the left or right side of the screen. Their task was to press the ‘A’
key if the word was “LEFT” and the ‘L’ key if the word was “RIGHT”, regardless of the
location on the screen. On 50% of the trials, the word matched the location (e.g., the
word “LEFT” presented on the left side; congruent trials). On the other half, the word
did not match the location (e.g., the word “LEFT” presented on the right side; incongru-
ent trials). Participants first completed eight practice trials, followed by two test blocks
of 32 trials each, for a total of 64 trials.

Color-shape Task. This task measures the ability to shift attention between differ-
ent tasks (Miyake et al., 2000). On each trial, participants saw a square or a circle in
the center of the screen. This square or circle was either blue or yellow. Depending on
the task rule printed above the stimulus, their task was to classify the stimulus based
on its shape or color. On 50% of the trials, the rule was the same as on the preceding
trial (repeat trials). On the other half, the rule was different than on the preceding trial
(switch trials). The same stimulus was never presented more than twice in a row, and
there were never more than three repeat or switch trials in a row. Participants first
completed eight practice trials, followed by two test blocks of 32 trials each, for a total
of 64 trials.

Animacy-size Task. This task measures the ability to shift attention between tasks
(Arrington & Logan, 2004). On each trial, participants saw a single noun (in Dutch)
referring to an animal or object (adopted from Braem, 2017). Depending on the task
rule presented on the screen, their task was to classify the noun based on whether it
referred to a living or non-living thing (e.g., wasp vs. piano), or whether it referred to
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something that was smaller or larger than a soccer ball (e.g., ring vs. dolphin). On 50%
of the trials, the rule was the same as on the preceding trial (repeat trials). On the other
half, the rule was different than on the preceding trial (switch trials). There were never
more than three repeat or switch trials in a row. Participants first completed eight prac-
tice trials, followed by two test blocks of 32 trials each, for a total of 64 trials.

Global-local Task. This task measures the ability to shift attention between tasks.
We adapted the stimuli from Huizinga et al. (2010). On each trial, participants saw a
large square or rectangle composed of 16 small squares or rectangles. The stimulus
was flanked on both side by a drawing of an elephant or mouse, which was presented
1,000 ms prior to the appearance of the stimulus. If the stimulus was flanked by the
image of an elephant (50% of trials), participants had to indicate whether the global
image was a square or rectangle. If the stimulus was flanked by the image of a mouse
(50% of trials), participants had to indicate whether the local images were squares or
rectangles. On 50 % of the trials, the rule was the same as on the preceding trial (re-
peat trials). On the other half, the rule was different than on the preceding trial (switch
trials). Finally, the stimuli were congruent on 50% of the trials (e.g., large square con-
sisting of small squares) and incongruent on the other half (e.g., large square consisting
of small rectangles). Congruency, task rule (switch vs. repeat), or focus (global vs. lo-
cal) where never repeated more than three times in a row. Participants first completed
eight practice trials, followed by two test blocks of 32 trials each, for a total of 64 trials.

Posner Task. This task measures basic speed of processing (Posner & Mitchell,
1967). On each trial, participants saw two letters in the center of the screen, drawn
from the set A, B, E, H, Q, a, b, f, h, and q. Their task was to indicate whether the letters
were the same (e.g., “AA”, “bB”) or different (e.g., “AQ”, “Fh”). On 50% of the trials, the
letters were the same, and on the other half they were different. Participants first com-
pleted eight practice trials, followed by two test blocks of 40 trials each, for a total of
80 trials.

State anxiety

Participants reported their state anxiety after each cognitive task; thus, six times in to-
tal. We measured state anxiety using the shortened version of the State-Trait Anxiety
Inventory (Bij et al.,, 2003; Marteau & Bekker, 1992), which asks participants how calm,
tense, upset, relaxed, content, and worried they currently feel, on a scale of 1 (“not al
all”) to 4 (“very much”). We recoded (if necessary) and then summed the answers with
higher scores reflecting more state anxiety.

Environmental noise

Participants reported the level of environmental noise after each cognitive task; thus,
six times in total. We measured environmental noise using a single item, rated on a
scale of 1 to 5: “How much noise was there in your environment during the game?”
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Confounds

We used Directed Acyclic Graphs to identify potential confounds of the key estimands,
which were the associations between self-reported threat and material deprivation in
adulthood with cognitive outcomes. A Directed Acyclic Graph is a visual overview of
assumptions about how variables are causally related. They are graphs consisting of
nodes (variables) and directed arrows (causal pathways). An arrow between two vari-
ables represents the assumption that experimentally manipulating the variable at the
origin of the arrow will change the variable at the end of the arrow (but not the other
way around). Directed Acyclic Graphs aid in the identification of variables that need
to be adjusted for in the statistical models (i.e., confounders with arrows to both the
main predictor and the outcome), and, equally importantly, which variables should not
be adjusted for (i.e., colliders and mediators). For a detailed explanation, see Rohrer
(2018).

The set of potential confounders consisted of (1) age (Salthouse, 2016, 2019;
Starns & Ratcliff, 2010); (2) education (Hofmarcher, 2021); (3) sex (Ning et al,, 2023);
(4) childhood adversity exposure (material deprivation and threat combined) (Bos et
al.,, 2009; Goodman et al., 2019); and (5) potential causal relations between recent ma-
terial deprivation and recent threat (Bywaters et al., 2016; Lacey et al., 2022; Ning et
al., 2023). We made these decisions based on previous literature, or, in cases of doubt,
by statistically testing support for specific relations using data from a previous LISS
study (Vermeent et al., 2025). Specifically, following our preregistration, we used the
dagitty R package (Ankan et al., 2021; Textor et al., 2016) to test whether independen-
cies between specific variables implied by the Directed Acyclic Graph (conditional on
the other causal pathways) were supported by these data (see the preregistration for
more details).

Figure 3.2 depicts the final preregistered Directed Acyclic Graph for material de-
privation and threat exposure in adulthood. For threat exposure in adulthood, our sta-
tistical model controlled for age, sex, childhood adversity, and recent material depri-
vation. We included material deprivation in adulthood based on studies showing that
material deprivation tends to precede exposure to adversities such as threat (Bywaters
etal, 2016; Lacey et al., 2022; Ning et al., 2023). We did not control for education given
a lack of theoretical and statistical support for this effect (see preregistration). To ex-
plore the effect of our assumption that material deprivation tends to precede threat,
we also present a secondary model excluding material deprivation in adulthood as a
confound. As preregistered, we will not base our main conclusions on this secondary
model.

For material deprivation in adulthood, our primary statistical model controlled for
age, education, sex, and childhood adversity exposure based on previous studies (see
above). We did not control for threat exposure in adulthood, as, following the Directed
Acyclic Graph, we assume that threat exposure mediates the effect of recent material
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deprivation on cognitive processes. If true, including threat exposure in the model
would make the association between material deprivation and cognitive processes an
indirect effect, rather than a total effect (which was our estimand). To explore the effect
of our assumption that threat mediates the effect of material deprivation on cognitive
processes, we also present a secondary model that includes threat in adulthood as a
confound. As preregistered, we will not base our main conclusions on this secondary
model.

Procedure
We obtained ethical approval from the Ethics Review Board of the Faculty of Social
& Behavioral Sciences of Utrecht University (FETC20-490) and the Ethics commit-
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Figure 3.2. Direct Acyclic Graphs (DAG) depicting our causal assumptions about the main esti-
mands. the rectangles (nodes) depict variables, and directed arrows depict assumed causal pathways. An
arrow between two variables represents the assumption that experimentally manipulating the variable
at the origin of the arrow will change the variable at the end of the arrow (but not the other way around).
The statistical models control for confounding variables (depicted as dashed paths), which have an ar-
row both to the independent variable and the dependent variable.
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tee for research in the Sciences and Life Sciences of the University of Amsterdam
(FNWI-41_2023). The study was implemented on the LISS platform, and participants
could only complete the study on a laptop or desktop PC. Participants started with the
six cognitive tasks, in randomized order. After each task, they indicated their state anx-
iety and the level of environmental noise. Then, participants had the option to either
continue to the next task or complete the other tasks at a later point in time. 86 %
of participants completed all tasks in a single session, and 14 % of participants took
two or more sessions. Jointly, the cognitive tasks took around 25 minutes to complete.
After finishing all cognitive tasks, participants completed questionnaires about neigh-
borhood threat and material deprivation during childhood and, adulthood exposure to
crime victimization in the past two years. They also completed questionnaires on im-
pulsivity, self-control, and future orientation, which are not considered here because
they fall outside of the scope of the present study. As some participants had already
completed all of these questionnaires in a different data collection (about six months
prior to the current study), we only presented the questionnaires to new participants.
Finally, all participants answered a few standard LISS evaluation questions about the
study, giving them an opportunity to provide written feedback.

Analysis plan

Data cleaning

For all tasks, we first removed any response times > 10 seconds. This step was not pre-
registered but was necessary given that we did not specify a response time-out. Conse-
quently, a small portion of response times lasted up to several minutes, likely reflecting
breaks or interruptions (between 0.02 % and 0.25 % for all tasks). We removed these
first to prevent them from biasing our preregistered exclusion of outliers. Next, we ap-
plied two preregistered exclusion criteria. First, we removed trials with response times
< 250 ms and trials with response times more than 3.2 SD above the intra-individual
log-transformed mean response time. Second, if participants performed at chance level
on a particular task, we excluded the data for that task only. We set the cut-off for
chance performance based on accuracy at the 97.5 % tail of the binomial distribution
one would obtain if guessing.

DDM estimation

We used a Hierarchical Bayesian implementation of the DDM (Vandekerckhove et al.,
2011; Wiecki et al,, 2013) to leverage group-level information for individual parame-
ter estimation. We applied this model to each task separately. For the Posner Task, we
estimated a single drift rate, boundary separation, and non-decision time for each par-
ticipant. For the other five tasks, we estimated drift rates, boundary separation, and
non-decision times separately for congruent (repeat) and incongruent (switch) trials.

The DDM models were fit using the runjags package (Denwood, 2016). We fit each
model with three Markov Chain Monte Carlo chains. We used 2,000 burn-in samples
and 10,000 additional samples, retaining every 10th sample, resulting in a total of
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3,000 posterior samples. Model convergence and fit was good across all DDM models
(see section 3 of the supplemental materials).

We accounted for two potential sources of measurement error in the DDM esti-
mates: (1) the level of environmental noise and (2) within-participant differences from
mean state anxiety between the tasks (see above). We used linear regression to resid-
ualize the variance of noise and anxiety out of all the drift diffusion estimates. See Sec-
tion 4 of the supplemental materials for more information.

Structural equation modeling

We constructed the full structural equation model sequentially. First, we optimized the
fit of the drift rate, boundary separation, and non-decision time sub-models. Second,
we combined these three models into a single measurement model. Third, we added
the regression paths between measures of adversity in adulthood and the latent fac-
tors. To assess goodness-of-fit, we used the root mean square error of approximation
(RMSEA) and the comparative fit index (CFI). CFI values > 0.90 (> 0.95) and RMSEA
values < 0.08 (< 0.06) were interpreted as acceptable (good) fit.

Each DDM parameter sub-model was a bi-factor model including the parameter
estimates of all tasks as manifest variables. We estimated a general factor accounting
for variance in all manifest variables. A second ability-specific inhibition factor loaded
on the parameter estimates of incongruent trials of the Flanker and Simon tasks. A third
specific attention shifting factor loaded on the parameter estimates of switch trials of
the Color-shape, Global-local, and Animacy-size tasks. These two factors were allowed
to covary. We also estimated covariances between the conditions of each task. For each
sub-model, we compared the fit of this initial model to a version with a common EF
factor loading on incongruent/switch trials of all tasks. We deemed the second model
a better fit when we observed a significant chi squared change test and an AIC value
difference > 10.

For the drift rate model, we interpreted the general factor as basic speed of pro-
cessing, and the ability-specific factors as reflecting inhibition and attention-shifting
ability (or common EF in the case of the second model). For the boundary separation
and non-decision time models, we interpreted the general factor as general response
caution/speed of non-decision processes, and the ability-specific factors as reflecting
response caution/speed of non-decision processes specific to conflict trials.

After optimizing each sub-model, we combined them into a joint measurement
model. We allowed the general latent factors (processing speed, general caution, and
general non-decision time) to covary, as well as the ability-specific latent factors (sep-
arately for inhibition and attention shifting, unless a common factor was favored).
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Finally, we constructed two versions of the final model, one to estimate the asso-
ciation between material deprivation in adulthood and the outcome measures, and one
to estimate the association between threat exposure in adulthood and the outcome
measures. In both models, we regressed the adversity measure on each latent factor,
together with the control variables (see the section on confounds for more details). We
report indirect effects of control variables in the supplemental materials (section 5).

Inferential criteria

We tested for three types of associations between different types of adversity with EF
ability and processing speed (as indexed by drift rates): enhancements, impairments,
or practical equivalence. We defined enhancements as a positive association between
adversity and drift rates. We defined impairments as a negative association between
adversity and drift rate. We defined practical equivalence as standardized regression
coefficients that significantly fell between —0.10 and 0.10. We tested this using the Two
One-Sided T-tests procedure (Lakens et al., 2018). This test evaluates whether the ob-
tained effect is significantly larger than the lower bound and significantly smaller than
the upper bound. Thus, it affords conclusions about practical equivalence based on sig-
nificant p-values, rather than (invalidly) inferring the absence of an effect on the basis
of non-significant results.

Transparency and openness

We have reported how we determined our sample size, all data exclusions, and all
measures in the study. The preregistration, analysis code, and study materials, can be
found on the article’s GitHub repository (https://github.com/stefanvermeent/liss_ef_
2024). The newly collected data will be available for other researchers in the LISS data
archive, after signing a data use agreement (https://lissdata.nl). For more information
on the LISS variables used, see the article’s GitHub repository (https://github.com/
stefanvermeent/liss_ef_2024). Our study complies with Level 2 of the Transparency
and Openness Promotion (TOP) guidelines.

3.3 Results

Structural equation model fit

As preregistered, we started with optimizing fit in structural equation models for each
DDM parameter separately before combining them all into a single model. For drift
rates, we selected the model containing a general processing speed factor (loading on
all drift rates) and a common EF factor (loading only on drift rates of incongruent and
switch conditions). An alternative model with a separate inhibition and attention shift-
ing factor did not converge. The model with a common EF factor provided a good fit
to the data (CFI = 0.98, RMSEA = 0.04 [0.03, 0.05]). However, the loadings of the com-
mon EF factor were small and in opposing directions, and the latent factor’s residual
variance was non-significant. Therefore, we did not estimate associations between ad-
versity and common EF.
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For both boundary separation and non-decision time, we selected a model con-
taining only a general factor (loading on all boundary separations/non-decision times),
which provided a good fit to the data (boundary separation: CFI = 0.98, RMSEA =
0.05 [0.04, 0.06]; non-decision time: CFI = 0.98, RMSEA = 0.04 [0.03, 0.05]). The two
preregistered models specifying additional latent factors loading only on switching/
incongruent conditions did not converge.

The final model combining all three DDM parameters provided a good fit, although
it required the addition of covariances between residual variances of manifest DDM
parameters of the same task (reflecting shared method variance), CFI = 0.96, RMSEA =
0.04 [0.04, 0.05]. See Figure 3.3 for a visualization and Table 3.3 for fit statistics of all
models.

Table 3.3. Fit statistics of all preregistered structural equation models.

Model Chi square Robust CFlI Robust RMSEA
Measurement models
Drift rate model 1 Model did not converge
Drift rate model 1 125.42 (45), p <.001 0.98 0.04 [0.03, 0.05]
Boundary separation model 1 Model did not converge
Boundary separation model 2 Model did not converge
Boundary separation model 1 165.37 (50}, p < .001 0.98 0.05 [0.04, 0.06]
Non-decision time model 1 Model did not converge
Non-decision time model 2 Model did not converge
Non-decision time model 3 120.05 (50), p < .001 0.98 0.04 [0.03, 0.05]
Full measurement model 1249.81 (445), p <.001 0.96 0.04 [0.04, 0.05]
Structural models
Primary deprivation model 1564.34 (599), p < .001 0.95 0.04 [0.04, 0.04]
Secondary deprivation model 162591 (661),p <.001 0.96 0.04 [0.04, 0.04]
Primary threat model 1309.71 (599), p < .001 0.95 0.04 [0.04, 0.04]
Secondary threat model 1361.94 (602), p < .001 0.95 0.04 [0.04, 0.05]

Note: for each DDM parameter, measurement model 1 contained a task-general latent factor
as well as separate latent factors for inhibition and shifting. Measurement model 2 contained
a task-general latent factor as well as a common EF factor. Measurement model 3 contained
only a task-general latent factor.
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Chapter 3

Preregistered analyses

Our primary analyses examined the association of exposure to material deprivation
and threat in adulthood with task-general processing speed, task-general response
caution, and task-general speed of stimulus encoding and/or response execution. As
the structural equation model analyses reported above showed that EF-specific factors
had non-significant variances, we retained them in the model but did not include them
as dependent variables in subsequent analyses.

Material deprivation in adulthood

Exposure to material deprivation in adulthood was not associated with either general
processing speed (8 = -0.08, p = .063), task-general response caution (8 = 0.06, p
=.155), or task-general non-decision time (8 = 0.05, p = .153) (see Figure 3.4). In ad-
dition, none of the effects fell within the region of practical equivalence (all ps =.092).
The effects in the secondary model (including expossure to threat in adulthood as a
confounder) were comparable.

Threat in adulthood

Exposure to threat in adulthood was negatively associated with task-general process-
ing speed (8 = -0.10, p = .036) (see Figure 3.4). People who reported more exposure
to threat in adulthood processed information more slowly across tasks. Exposure to
threat in adulthood was not associated with task-general response caution (8 = 0.04,
p = .355), or task-general non-decision time (8 = -0.04, p = .333). The effects in the
secondary model (excluding material deprivation in adulthood as a confounder) were
comparable, although the association with task-general non-decision time was practi-
cally equivalent in the secondary model.

Non-preregistered analyses

Associations with childhood adversity

In the first set of non-preregistered analyses, we analyzed how childhood exposure to
threat and material deprivation are associated with task-general and ability-specific
cognitive processes. The rational for these analyses is that we observed significant in-
direct associations between childhood adversity and general speed of processing in our
preregistered analyses. Here, we analyzed direct effects of childhood threat and mate-
rial deprivation (i.e., without including exposure to adversity in adulthood). We con-
trolled for sex (but not age and education) and in the case of threat we also controlled
for material deprivation, but not the other way around (similarly to the preregistered
analyses).

Childhood exposure to material deprivation was negatively associated with gen-
eral processing speed, 8 = -0.24, SE = 0.04, 95% CI = [-0.31, -0.17], p < .001 (Figure
3.5). People who reported higher levels of childhood exposure to material deprivation
processed information more slowly across tasks. In addition, childhood exposure to
material deprivation was positively associated with non-decision time, 8 = 0.1, SE =
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Figure 3.4. Standardized (preregistered) associations between exposure to adversity in adulthood
with task-general processing speed, response caution, and non-decision time. The left panel depicts ef-
fects of material deprivation and the right panel depicts effects of threat. The top row depicts effects
of the primary statistical model (following from our main Directed Acyclic Graph), and the bottom row
depicts effects of the secondary statistical model (see Figure 3.2). For material deprivation in adulthood,
the primary statistical model included age, education, and childhood adversity as confounders, whereas
the secondary model additionally included threat in adulthood as a confounder. For threat in adulthood,
the primary statistial model included age, childhood adversity, and material deprivation in adulthood,
whereas the secondary statistical model did not include material deprivation in adulthood as a con-
founder. The gray area reflects the preregistered area of practical equivalence. Effects depicted with a
solid point are practically equivalent, and effects depicted with a hollow point are not practically equiv-
alent. Standard errors represent 95% confidence intervals. Statistical significance (tested against zero)
is indicated with asterisks; * p <.05, ** p <.01, ** p <.001.

0.04, 95% CI = [0.02, 0.18], p = .015. People who reported higher levels of childhood
exposure to material deprivation took more time to encode stimulus information and/
or execute responses across tasks. Childhood exposure to material deprivation was not
associated with general response caution. Equivalence tests revealed that none of these
associations fell within the region of practical equivalence.
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Figure 3.5. Standardized (non-preregistered) associations between childhood exposure to adver-
sity with task-general processing speed, response caution, and non-decision time. The left panel depicts
effects of material deprivation and the right panel depicts effects of threat. The gray area reflects the
preregistered area of practical equivalence. Effects depicted with a solid point are practically equivalent,
and effects depicted with a hollow point are not practically equivalent. Standard errors represent 95%
confidence intervals. Statistical significance (tested against zero) is indicated with asterisks; * p <.05, **
p<.01,**p<.001.

For childhood exposure to threat, we found a significant negative association with
general processing speed, 5 = -0.14, SE = 0.04, 95% CI = [-0.23, -0.06], p < .001. Peo-
ple who reported higher levels of childhood exposure to threat processed information
more slowly across tasks. We did not find significant associations between childhood
exposure to threat and general response caution or general non-decision time. Of these
associations, equivalence tests revealed that the association with general response
caution fell within the region of practical equivalence (p =.026).

Associations with task-specific drift rates

In the second set of non-preregistered analyses, we analyzed how adversity exposure
during childhood and adulthood were associated with task-specific residual variances.
The rationale for these analyses was that while we did not find coherent latent EF fac-
tors, all tasks showed significant residual variance after accounting for general speed
of processing. This implies that, after accounting for general speed of processing, per-
formance is further determined by unique features of individual tasks (i.e., method
variance), which may be associated with adversity exposure. For this analysis, we were
mostly interested in investigating the extent to which task-specific effects reflect EF
abilities or task-specific processing, and therefore only focused on drift rates.

We first attempted to fit a model in which all task-specific drift rates were allowed

to covary (i.e., across inhibition and attention-shifting tasks). However, this model did
not converge. A model that only estimated covariances between task-specific drift rates
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of inhibition tasks and attention shifting tasks separately provided a good fit to the
data (CFI =0.99, RMSEA = 0.03 [0.02, 0.04]). This suggests that task-specific drift rates
correlated among inhibition tasks and among attention-shifting tasks, but not between
inhibition and attention-shifting tasks.

Figure 3.6 shows latent correlations between task-specific drift rates after ac-
counting for task-general processing speed. The drift rates of repeat and switch con-
ditions within each attention shifting task correlated moderately to strongly, while
all correlations between tasks were low. This suggests that task-specific drift rates of
attention shifting tasks captured features of the tasks that were not shared between
tasks. In contrast, all correlations between task-specific drift rates of inhibition tasks
were low, even among drift rates of the same task. Thus, task-specific drift rate did pro-
vide consistent measures of specific EF abilities that are shared across tasks.

Next, we explored the associations of task-specific drift rates with exposure to
material deprivation and threat in both childhood and adulthood, after accounting for
task-general processing speed (Figure 3.7). Exposure to material deprivation in adult-
hood was not associated with task-specific drift rates of any of the tasks. Exposure to
threat in adulthood was negatively associated all task-specific drift rates in both the
repeat and switch condition of the Color-shape task (repeat: 5 =-0.14, SE = 0.05,95%
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Figure 3.6. Correlations between task-specific drift rates after accounting for task-general process-
ing speed.
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CI = [-0.23, -0.05], p = .025; switch: 8 = -0.13, SE = 0.05, 95% CI = [-0.22, -0.04], p
=.025). None of the other associations were significant.

Childhood exposure to material deprivation was negatively associated with all
task-specific drift rates, with effect sizes ranging from = -0.08 for the congruent con-
dition of the Simon Task to 8 = —0.27 for the incongruent condition of the Global-local
Task. Childhood exposure to threat was negatively associated with all but the task-spe-
cific drift rates of the congruent condition of the Flanker and the Simon task. The effect
sizes of significant effects ranged from 5 = -0.06 for the incongruent condition of the
Simon Task to 5 = -0.16 for the switch condition of the Posner Task.

To summarize, we did not find evidence that exposure to threat or material depri-
vation (either in childhood or adulthood) was associated to specific inhibition or atten-
tion-shifting ability. Rather, we mostly found associations with task-general processes.
We did find associations between childhood adversity and task-specific drift rates.
However, correlations among task-specific drift rates were low, even for tasks thought
to measure the same EF ability, suggesting that they reflect method variance rather
than specific EF abilities.

3.4 Discussion

We investigated associations between exposure to two types of adversity in adulthood
—material deprivation and threat—with inhibition and attention shifting ability. Par-
ticipants completed two inhibition tasks, three attention shifting tasks, and one basic
processing speed task. First, we used DDM to separate raw performance into three dis-
tinct cognitive processes: (1) speed of evidence accumulation (drift rate), (2) response
caution (boundary separation), and (3) speed of stimulus encoding and response exe-
cution (non-decision time). Finally, we used structural equation modeling to separate
variance in each cognitive process into a task-general factor (shared across all tasks)
and ability-specific factors.

Main findings

People with more exposure to threat in adulthood—but not material deprivation—
showed lower general processing speed. This is consistent with predictions from deficit
frameworks (Sheridan & McLaughlin, 2014; Tucker-Drob, 2013). After accounting for
general processing speed, there was no remaining variance that could be attributed to
either inhibition ability or attention shifting ability. Additionally, the associations be-
tween material deprivation and threat in adulthood with both response caution and
non-decision time were neither significantly different from zero, nor practically equiv-
alent to zero. In other words, from these data, we were neither able to conclude that
people with more exposure to adversity differed in their level of response caution and
non-decision time, nor that these processes were similar to people with lower levels of
adversity exposure.
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Figure 3.7. Standardized (non-preregistered) associations between adversity and task-specific
drift rates. The effects are split out over adversity type (columns) and timing of adversity (rows). The
gray area reflects the area of practical equivalence. Triangles depict effects for repeat/congruent condi-
tions, and circles reflect effects for switch/incongruent conditions. Effects depicted with a solid point are
practically equivalent, and effects depicted with a hollow point are not practically equivalent. Standard
errors represent 95% confidence intervals. Statistical significance (tested against zero) is indicated with
asterisks; * p < 0.05, ** p < 0.01, *** p < 0.001.

We found that variance in EF task performance was mostly explained by a task-
general factor, not by ability-specific factors. This finding aligns with previous research
applying DDM to EF tasks. Three recent studies converged on the similar conclusion
that performance across different EF tasks is best explained by a task-general drift rate
factor (Frischkorn et al,, 2019; Hedge et al., 2022; Loffler et al.,, 2024; Weigard et al.,
2021). One study found that the task-general drift rate factor fully reflected basic pro-
cessing speed, rather than common EF processes (Loffler et al,, 2024). Similarly, an-
other study including several inhibition tasks found that shared variance was mostly
explained by basic processing speed and strategy differences, not by inhibition abil-
ity (Hedge et al,, 2022). It is therefore not surprising that we were unable to estimate
ability-specific EF factors after accounting for general processing. These issues tie into
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several other criticisms of common EF tasks in the cognitive psychology literature—
such as low test-retest reliability—which should be considered when using these tasks
to test associations with adversity (Bastian et al., 2020).

Our results also align with research showing that associations between adversity
and raw performance (e.g, response times, accuracy) on EF tasks are mostly task-gen-
eral. For instance, across three large cohorts, youth from more disadvantaged back-
grounds had lower task-general raw performance across a wide range of cognitive
tasks. After controlling for task-general effects, performance on specific intelligence
tasks was largely practically equivalent to zero, and performance on some specific EF
tasks even appeared enhanced (Bignardi et al., 2024). Finally, previous research apply-
ing DDM in the context of adversity found similar (but not identical) results as reported
here. Youth with more exposure to threat (but not material deprivation) had slower
general processing speed across three EF tasks and a basic processing speed task, while
most specific abilities remained intact (Vermeent et al.,, 2024). In contrast to the find-
ings reported here, these youth also showed more response caution. It is important to
highlight that both studies measured specific EF abilities with only a single task. This
makes it unclear to which extent the task-specific effects they observed reflected EF
abilities (see also our non-preregistered findings discussed below).

Non-preregistered findings

Additional non-preregistered analyses showed that childhood exposure to both mate-
rial deprivation and threat were associated with slower general processing speed. The
effect sizes of these associations were larger than those of recent adversity exposure.
This finding is striking considering the average age in our sample was 39 years. This
is consistent with previous literature suggesting that adverse experiences early in life
have a lasting effect on brain development (Nelson et al., 2020; Nelson & Gabard-Dur-
nam, 2020; Shonkoff et al., 2012). For instance, both experiences of malnutrition and
exposure to stress (e.g., as a result of threat) have been linked to structural changes
in brain networks involved in cognitive functioning (Algarin et al.,, 2017; Polavarapu &
Hasbani, 2017; Rebello et al., 2018).

A second important non-preregistered finding is that after controlling for task-
general processing, adversity exposure was negatively associated with several task-
specific drift rates, mostly relating to childhood exposure to threat and deprivation.
Importantly, the correlations among task-specific drift rates were all small—with the
exception of correlations among switch and repeat conditions of the same attention
shifting tasks. This suggests that these negative associations should not be interpreted
as lower ability-specific processing, relating to inhibition and attention shifting ability.
Instead, it appears to relate to information processing that is much more specific to in-
dividual tasks. This is consistent with literature showing that a substantial part of the
variance in performance on cognitive task consists of method variance resulting from
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the nature of the task itself, rather than what the task is designed to measure (Barkley,
2012; Rey-Mermet, 2024; Schubert et al., 2016).

Implications for adversity research and interventions

Our results have two implications for adversity research and interventions, both of
which warrant caution against interpreting raw performance on individual EF tasks.
First, adversity appears to be associated mostly with task-general processes, rather
than specific abilities. This contrasts with common inferences in both the deficit and
adaptation literature, which tend to explain performance differences in terms of spe-
cific EF abilities, such as inhibition (Farah et al,, 2006; Fields et al., 2021; Mezzacappa,
2004; Mittal et al.,, 2015; Noble et al., 2005) and attention shifting (Fields et al., 2021;
Howard et al,, 2020; Mittal et al., 2015; Nweze et al.,, 2021; Young et al., 2022). More-
over, our results show that accounting for task-general processing does not guarantees
that task-specific associations with adversity reflect differences in EF. Instead, negative
associations with adversity appear to be partly driven by specific features of individ-
ual tasks. A general recommendation for adversity research is therefore that studies
should include (1) multiple EF tasks to quantify task-general processing speed, and (2)
ideally two or more tasks measuring the same EF ability to quantify ability-specific pro-
cessing. DDM and SEM can then be used to account for task-general and task-specific
processes. For interventions, our results imply that individual EF tasks, or batteries
of EF tasks each of which measures a different ability, have limited value as screening
tools; and, that training performance on such tasks is unlikely to transfer to broader,
sustainable changes in EF abilities.

Our findings complicate research that aims to understand how EF abilities develop
in adverse environments. We agree with others that results like ours do not necessarily
mean that EF abilities do not exist (e.g., Loffler et al.,, 2024), or that adversity is not as-
sociated with differences in EF. Rather, it points to issues with how we measure EF abil-
ities. It is difficult to provide a straightforward solution for this problem, which is still a
much-debated topic in cognitive psychology (Bastian et al., 2020). Part of the solution
may lie in adjusting the content of EF tasks, for instance, by using real-world content
rather than abstract content (Young et al., 2022). By increasing familiarity, relevance,
and/or valence, such content might increase the engagement of EF abilities (Niebaum
& Munakata, 2023). Another solution could be to use adaptive testing procedures,
which appear to improve estimation of EF abilities (Draheim et al., 2021). However,
more fundamental changes might be necessary as well, such as developing new para-
digms that align more closely to people’s everyday experiences, goals, and challenges
(Doebel, 2020; Miller-Cotto et al., 2022; Niebaum & Munakata, 2023).

Strengths, limitations, and future directions

Our study has three main strengths. First, we measured inhibition and attention shift-
ing ability using multiple tasks for each EF ability. This approach provided two advan-
tages: (1) we could distinguish between general versus specific processes, and (2) we
could measure EF abilities without task-specific measurement error. Second, we used
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DDM to distinguish between evidence accumulation (EF ability, general speed of pro-
cessing), response caution, and non-decision time (stimulus encoding, response exe-
cution). The DDM allowed us to better understand the cognitive processes driving per-
formance in people with more exposure to adversity. Third, we included a large, rep-
resentative sample of the Dutch population sample with sufficient variance on key ad-
versity measures.

Our study has three main limitations. First, although we included confounding
variables based on explicit, theory-guided causal assumptions, the cross-sectional and
partly retrospective nature of our data prohibit us from establishing true causal rela-
tionships. Second, due to time constraints, we only included two inhibition tasks and
three attention shifting tasks, limiting our ability to model shared variance between
them. Future studies could include more EF tasks, and ideally include several basic pro-
cessing speed tasks. Third, participants completed the cognitive tasks online in their
own home. Despite our controlling for environmental factors that may have disrupted
task performance, the home setting may have reduced the reliability of performance
measures.

We envision three future directions. First, because adversity tends to be associ-
ated with task-general processes, it will be important to better understand the nature
of these processes. To the extent that task-general drift rates reflect general process-
ing speed, it may partly result from lower white matter tract integrity (Fuhrmann et
al,, 2020; Kievit et al., 2016). Such associations with structural brain differences may
account for the finding that task-general drift rate is relatively stable over time (Schu-
bert et al., 2016; Weigard & Sripada, 2021). Yet, task-general drift rate may be associ-
ated with other factors such as effort, fatigue, or hunger (Weigard & Sripada, 2021),
which may play a bigger role for people from adverse environments (Brose etal., 2012;
Schwabe et al., 2013; Sliwinski et al., 2006). Thus, future studies may include (a combi-
nation of) brain measures or measures of mental states to better understand inter- and
intrapersonal differences in task-general drift rates.

Second, future research should investigate why adversity is negatively associated
with task-specific drift rates. Our results suggest that task-specific drift rates mostly
capture method variance rather than specific EF abilities. We currently do not have a
clear explanation for their negative associations with adversity. One possible explana-
tion might be that the associations reflect people’s difficulty with processing abstract
content. Previous research found that youth with more exposure to adversity per-
formed lower on a working memory updating task (compared with youth with fewer
adversity exposures) when task stimuli were abstract geometric shapes. However, their
performance equalized when the task included real-world content (Young et al., 2022).
All tasks in our study included abstract content, and each study used different stimuli,
which may account for the negative associations with adversity and the lack of corre-
lations between task-specific drift rates. However, if so, this would not explain the low
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correlations between congruent and incongruent conditions of both the Flanker and Si-
mon task, as these conditions do include the same stimuli. Nevertheless, research could
more systematically test associations between adversity and processing as a function
of task content.

Third, future research could design preregistered, well-powered analyses to tease
apart the unique effects of childhood adversity and recent adversity on cognitive
performance, as well as their combined effects. Our understanding of how cognitive
outcomes later in life depend on the developmental timing of adversity exposure is
still limited (Frankenhuis, Young, et al., 2020). In this study, we assumed that recent
adversity exposure mediates the effect of childhood adversity exposure on cognitive
processes, as people who experienced adversity early in life are more likely to also ex-
perience adversity later in life (e.g., due to systemic constraints; Hazel et al. (2008)).
Our study focused on adversity in adulthood, the average or summed adversity expo-
sure over the past few years. Future research should distinguish such recent adversity
from acute stress. For instance, some research suggests that childhood adversity en-
hances specific EF abilities, but only under situations of acute stress (Mittal et al., 2015;
Young et al., 2018). Thus, future research should tease apart effects of adversity during
childhood and adulthood and study how their effects are moderated by acute stress.

Constraints on generality

Our research question concerned the association between adversity exposure and per-
formance on EF tasks, using cognitive modeling to investigate whether these associa-
tions are driven by task-general processing speed or specific EF abilities. Our target
population was Dutch adults with a broad range of adversity exposures. The LISS panel
ensures representation of the Dutch adult population in terms of—among other factors
—age, education, and socioeconomic status. Our findings may generalize to adults in
other Western populations, but not necessarily to adults in non-Western populations
(NKketia et al., 2024). We used standardized inhibition and attention-shifting tasks that
are often used in cognitive psychology. The findings should generalize to other tasks
used to measure these abilities, as long as they rely on speeded responses. All tasks
included abstract stimuli (e.g., geometric shapes, words). Results are likely to be dif-
ferent when using more real-world stimuli, or when changing the tasks in other ways
to align them with people’s lived experiences (Doebel, 2020; Miller-Cotto et al.,, 2022;
Young et al., 2022). Participants completed the study online in their home environment.
To reproduce the effects, it is important to carefully instruct participants to limit envi-
ronmental distractions and complete the study in full-screen mode. The results should
generalize to more standardized settings (e.g., the lab), but may not generalize to pub-
lic settings outside of the home environment.

Conclusion

Adversity research has made important steps in recent years, revealing how exposure
to adversity may impair certain EF abilities while enhancing others. Further progress
in this field hinges on our capacity to accurately measure specific EF abilities. We show,

79



Chapter 3

consistent with previous research, that this is a more challenging task than typically
assumed. As a result, adversity researchers likely overestimate the strength of associ-
ations between adversity and EF abilities when only analyzing raw performance. We
present a way forward by building on a combination of cognitive modeling and struc-
tural equation modeling. Embracing these techniques, and revising theories in light of
their findings, will enhance our understanding of how exposure to adversity shapes EF.
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Childhood adversity is not associated with
lowered inhibition, but lower perceptual
processing: A Drift Diffusion Model analysis
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4.0 Abstract

It is well-established that individuals who grew up in adverse conditions tend to be
slower on the Flanker Task. This finding is typically interpreted to reflect difficulty in-
hibiting distractions. However, it might result from slower general cognitive processes
(e.g., reduced general processing speed), rather than the specific ability of inhibition.
We used Drift Diffusion Modeling in three online studies (total N = 1560) with young
adults to understand associations of adversity with Flanker performance. We find no
associations between exposure to violence and unpredictability with inhibition. Yet,
although mixed, violence and unpredictability exposure were associated with lower
strength of perceptual input—how well someone can process target and distractor
information alike. Finally, people with lower strength of perceptual input processed
information more holistically, focusing less on details. Thus, lowered Flanker perfor-
mance does not necessarily imply lowered inhibition ability. Cognitive modeling re-
veals a different picture of abilities in adverse conditions as opposed to analyses based
on raw performance.
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Childhood adversity is not associated with lowered inhibition, but lower perceptual processing

4.1 Introduction

The predominant view in developmental psychology is that exposure to adversity—
defined as prolonged exposure to intense stress—impairs cognitive abilities. This view
is supported by decades of research showing that people living in high-adversity con-
texts tend to score lower on a variety of cognitive tests (Hackman etal., 2010; Ursache &
Noble, 2016a). Recent adaptation-based perspectives, however, have argued that peo-
ple from adversity may also develop intact, or enhanced, abilities for solving problems
in high-adversity contexts (Ellis et al., 2017; Frankenhuis & Weerth, 2013). Adaptation-
and deficit-based perspectives are considered complementary. For instance, adversity
may impair some cognitive processes, yet enhance others. Despite their compatibility,
few studies have investigated how the interplay of impaired and enhanced abilities
shapes performance. Across three preregistered online experiments, we used cognitive
modeling to derive a process-level understanding of the association between childhood
adversity and performance in the Flanker task, a popular measure of cognitive control
(Ridderinkhof et al., 2021).

Attention in adverse conditions

It is well-established that early-life adversity is associated with deficits in the ability to
inhibit distracting, goal-irrelevant information (Hackman et al., 2010; Ursache & No-
ble, 2016a). One of the leading paradigms in this literature is the Flanker task (B. A.
Eriksen & Eriksen, 1974). On this task, participants typically see five arrows in a hor-
izontal orientation, and are asked to indicate the direction of the central arrow. The
flanking arrows point in the opposite direction on half of the trials, leading to interfer-
ence that participants must inhibit. Slower performance in the Flanker task has been
documented for children and adults with more environmental unpredictability (Fields
etal,, 2021; Mittal et al,, 2015). These findings are typically interpreted as indicating a
deficit in the ability to inhibit distractions.

Similar associations have been documented for factors that increase the risk of
adversity exposure, such as lower socioeconomic status (SES; Farah et al., 2006; Mez-
zacappa, 2004; Noble et al., 2005). Although people living in low-SES conditions expe-
rience more adversity, on average, we do not regard low SES itself as a form of adver-
sity. First, SES and adversity can affect cognitive abilities through different mechanisms
(e.g., education versus physiological stress). Second, people with low SES have diverse
experiences, both positive and negative, even if adversity is more common in this group.

Some recent studies suggest that growing up in adversity may also be associated
with improved abilities such as attention shifting (Fields et al., 2021; Mittal et al., 2015;
Young et al., 2022; but see Mezzacappa, 2004; Nweze et al., 2021). Some studies found
deficit patterns on inhibition tasks alongside enhancements on other aspects of atten-
tion within the same participants. For example, one study found that young adults
with more childhood unpredictability committed more errors on an Antisaccade task
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(a measure of inhibition), but more efficiently switched their attention between tasks
on an attention shifting task (Mittal et al., 2015). Similarly, children with more care-
giver switches (an indicator of unpredictability) experienced more interference in the
Flanker task (based on RTs), but outperformed children with fewer caregiver switches
on shifting their attention between different task goals (Fields et al., 2021).

Performance on attention tasks could reflect developmental adaptation to adverse
environments (Blair & Raver, 2012; D’angiulli, Lipina, et al., 2012; Frankenhuis, Young,
et al, 2020; Mittal et al., 2015). In unpredictable or threatening conditions, the ability
to detect salient peripheral information (e.g., distant noises or approaching individu-
als) could help to more quickly detect and act on potential threats. Over time, cognitive
adaptations to such conditions could result in a general tendency to use a more diffuse
scope of attention, leading to an enhanced ability to keep track of the broader environ-
ment. In line with this hypothesis, people with lower SES respond more strongly to
auditory distractors (Giuliano et al., 2018; Hao & Hu, 2024; Stevens et al., 2009) and are
faster to orient their attention to peripheral visual information (Mezzacappa, 2004).
While potentially adaptive, a more diffuse scope of attention could come at the cost
of lowered ability to ignore irrelevant distractors. This could compromise longer-term
goal-directed behavior, especially in chaotic environments (e.g., a noisy classroom or a
busy street).

Thus, lowered performance on tasks like the Flanker task could reflect either a
cognitive impairment or a difference in attentional strategies. Distinguishing between
these two possibilities is challenging for two reasons. First, few studies in the adversity
literature have measured performance differences on different attention tasks within
the same individual (Mezzacappa, 2004; Mittal et al., 2015). Thus, it is unclear whether
lowered inhibition is related to enhanced processing of peripheral information in peo-
ple from adverse backgrounds. Second, performance on inhibition tasks is—beyond
the ability to inhibit distractors—also influenced by other factors, such as a person’s
general processing speed and response caution (Hedge et al., 2022; Loffler et al., 2024).
This means that lowered performance on inhibition tasks does not necessarily reflect
inhibition difficulties. In other words, we should consider cognitive processes other
than ability when drawing inferences based on inhibition tasks.

Using Drift Diffusion Modeling to estimate attention and processing styles

An important issue, therefore, is that several processes are involved in performance
in the Flanker task, and standard assessments using raw performance measures (re-
sponse times, accuracy rates) mostly fail to distinguish between them. For example,
performance differences in the Flanker task could indicate that someone experiences
more (or less) distractor interference, generally processes less (or more) efficiently,
or responds with less (or more) caution. To understand how adversity affects perfor-
mance, we need to be able to separate the difference processes that make up perfor-
mance.
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Formal cognitive models such as the Drift Diffusion Model (DDM; Forstmann et
al., 2016; Ratcliff et al., 2015; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Wa-
genmakers, 2009) provide a potential solution. The DDM estimates explicitly models
the cognitive processes underlying the decision-making (See Figure 4.1a). [t represents
decision-making on binary decision-making tasks as a process in which people accu-
mulate information until one response is sufficiently favored over the other. These two
response options are represented as opposing boundaries. One boundary corresponds
to the correct response and the other to the incorrect response (note that in some re-
search designs, the boundaries may be coded as the two choice options instead, for
example, when the question is whether people classify a certain class of stimuli (e.g.,
angry faces) more efficiently than another class of stimuli (e.g., happy faces)). When
the accumulated information reaches one of the two boundaries, the corresponding
response is executed.

The DDM translates trial-level response times (RTs) and accuracy into three dis-
tinct cognitive processes. The speed of information accumulation is captured in a pa-
rameter called the drift rate. Higher drift rates are associated with faster responses and
higher mean accuracy. Response caution is modeled through the boundary separation;
that is, the width between the two boundaries. Larger boundary separation is associ-
ated with larger RTs and higher accuracy (i.e., sacrificing speed to increase accuracy).
Non-decision time represents the time it takes to prepare for the task at the start of
the trial (before information accumulation starts) and the time it takes to execute a re-
sponse (after a response boundary has been reached). Longer non-decision times are
associated with larger RTs, without influencing accuracy. Finally, the starting point rep-
resents a potential bias towards one of two responses, with a biased decision-making
process starting closer to one boundary relative to the other boundary.

The Shrinking Spotlight (SSP) model is an extension of the standard DDM to ac-
count for attention processes in the Flanker task (Grange, 2016; White et al,, 2011,
2018; White & Curl, 2018). The SSP model assumes that attention resembles a spotlight
that is normally distributed over the Flanker task arrows (with a particular starting
attentional width). Over time, people narrow their attention down to the central arrow
(atarate defined by the shrinking rate), thereby gradually decreasing interference from
irrelevant information (cf. C. W. Eriksen & St. James, 1986; see Figure 4.1b). Prior work
has defined the amount of distractor interference by dividing the attentional width
by the shrinking rate (White et al., 2018). People may experience less interference ei-
ther by starting with a narrower attentional width, and/or by more rapidly shrinking
their attention down to the target arrow. Finally, performance is also influenced by the
perceptual input strength; that is, how well someone can process the arrows in gen-
eral. Note that typical interpretations of lowered raw Flanker task performance are in
terms of the amount of interference that someone experiences, and not in terms of the
strength of perceptual input.
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A. The Drift Diffusion Model (DDM)
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Figure 4.1. A visual overview of the Drift Diffusion Model (DDM) and the Shrinking Spotlight Model
(SSP). Panel A: The DDM assumes that people go through three distinct stages on cognitive tasks with
two response options. In a first preparation phase, they encode the stimuli. In a second decision phase,
people accumulate evidence for both decisions (e.g., pressing left vs. right) until the decision boundary
for either the correct or incorrect response is reached. Each jagged line represents this information ac-
cumulation process on a single trial. In a third execution phase, people execute the motor response. The
model estimates four parameters reflecting distinct cognitive processes (printed in italic): (1) The drift
rate represents the average rate of evidence accumulation and measures processing speed; (2) The non-
decision time represents stimulus encoding and response exeuction; (3) The boundary separation rep-
resents the space between decision boundaries, and measures a person’s level of response caution; (4)
The starting point (not considered here) represents a potential bias towards a response, with a biased
decision-making process starting relatively closer to one boundary. Panel B: The SSP is an extension of
the standard DDM including additional parameters to capture attentional processes on the Flanker task.
Each arrow provides a certain strength of perceptual input (p). On incongruent trials, the perceptual in-
put of flanking arrows is coded negatively (-p). Attention is assumed to be normally distributed over the
arrows with a certain attentional width. Over time, attention narrows down toward the central arrow
at a rate determined by the shrinking rate, which gradually lowers interference from flanking arrows.
The drift rate in the SSP model is the sum of each arrow’s perceptual input multiplied by the attention
allotted to each arrow. As attention for the flanking arrows decreases over time, the drift rate is assumed
to increase over time (contrary to the standard DDM, which assumes a linear drift rate).
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The DDM and SSP model share many assumptions. Both provide identical esti-
mates of boundary separation and non-decision time. The main difference is the deci-
sion-making phase. The DDM assumes that the quality of the information is the same
across the entire trial. In contrast, the SSP model assumes that the quality of the infor-
mation improves across the trial, as attention becomes gradually focused more on the
central arrow. The simpler assumption of the DDM makes the model broadly applica-
ble, but less precise for conflict tasks. The SSP model is more precise, but applicable
only to the Flanker task. Previous studies have successfully applied the DDM to Flanker
task data (e.g, Loffler et al., 2024; Vermeent et al., 2024). However, unlike the DDM, the
SSP model affords testing hypotheses about the association between adversity and at-
tentional interference in the Flanker task. Specifically, we are interested in how child-
hood adversity is associated with both interference and the strength of perceptual in-
put. Finally, the SSP model is one of several completing diffusion models developed to
explain performance on conflict tasks (Hiibner et al., 2010; Ulrich et al., 2015). We fo-
cus exclusively on the SSP model because it performs well with relatively few trials per
participant relative to other conflict diffusion models (White et al., 2018).

Overview of studies

The overarching goal of our studies is to understand the attentional and processing
styles that people develop in conditions of adversity. We focus on measures of exposure
to violence and environmental unpredictability. Previous research shows that these
two types of adversity are on the one hand associated with improved attention shift-
ing and working memory updating (Fields et al., 2021; Mittal et al., 2015; Young et al,,
2018, 2022), and on the other hand with lowered inhibition and working memory ca-
pacity (Fields et al., 2021; Mittal et al., 2015; Young et al., 2018). We conducted three
online studies: one pilot study and two follow-up studies. Using cognitive modeling, we
unpack Flanker task performance in comparison to other tasks that require externally
focused attention (Pilot study), across visual processing manipulations (Study 1), and
in terms of tendencies for holistic versus local processing (Study 2).

We used an incremental preregistration approach across studies (for all prereg-
istrations, data, code and materials, see https://stefanvermeent.github.io/attention_
project/). For each study, we preregistered confirmatory (i.e., hypothesis-driven) and
exploratory analyses. The main text addresses the confirmatory analyses involving vio-
lence exposure and the exploratory analyses involving environmental unpredictability.
We describe the other exploratory analyses in the supplemental materials (section 2).
For an overview of all deviations from the preregistrations, see section 4 of the supple-
mental materials.

4.2 Pilot study

In the Pilot study, our goal was to understand how childhood adversity relates to per-
formance on tasks with different attentional demands. Participants completed self-re-
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port measures of childhood adversity and three cognitive tasks (Flanker task, Cued At-
tention task, and Change Detection task). These tasks measured inhibition, attention
for peripheral cues, and attention for subtle changes. In line with the idea that expo-
sure to adversity may lead to a more diffuse scope of attention, we expected people
with more violence exposure to be better at detecting peripheral stimuli and subtle
changes. We expected this would result in a higher drift rate (faster speed of informa-
tion accumulation) or shorter non-decision times (faster attention orientation, among
other things), but not necessarily with differences in boundary separation (response
caution). In contrast, we expected that participants with more violence exposure would
be worse at ignoring distracting peripheral stimuli. We expected this would result in
more experienced interference (as derived from the SSP model).

Methods

Participants

Participants were 565 people from the United States aged between 18 and 30 recruited
on Prolific Academic (https://www.prolific.co) (See Table 4.1 for demographic data).
The sample was balanced on sex. We used the MacArthur’s ladder, included in Prolific’s
prescreening battery, for assessing perceived SES to ensure about half of the sample
came from lower-SES backgrounds (which we defined as a score of 4 or below). Par-
ticipants were eligible if they spoke fluent English and did not report color-blindness.
We obtained ethical approval from the Ethics Review Board of the Faculty of Social &
Behavioral Sciences of Utrecht University (FETC20-490).
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Table 4.1. Demographic information for all studies.
Pilot study Study 1 Study 2

N 512 497 551
Mean age (SD) 24 (4) 25(3) 26(3)
Sex (%)
Male 49.4 49.3 49.9
Female 50.0 49.7 49.2
Prefer not to say 0.6 0.8 0.9
Intersex 0 0.2 0
Highest education (%)
Some high school 1.2 1.2 1.6
GED 1.8 16 2.4
High school diploma 17.8 14.7 151
Some college but no college degree  32.6 276 25.2
Associate's degree 6.8 8.2 10.2
Bachelor's or RN degree 31.6 37.2 35.8
Master's degree 7.2 7.8 7.6
Doctoral or law degree 1.0 1.6 1.6
Prefer not to say 0] 0] 0.5
Social class (%)
Poor 6.0 7.8 7.8
Working class 30.5 34.8 36.7
Middle class 46.1 40.2 39.2
Upper-middle class 16.4 16.1 14.5
Upper class 1.0 0.8 0.9
Don't know/prefer not to say 0 0.2 0.9

We conducted a power simulation using the faux package in R (DeBruine, 2021)
to determine the minimally required number of participants for standardized regres-
sion coefficients of 0.10 and 0.15 (for details and simulation code, see https://
stefanvermeent.github.io/attention_project/preregistrations/README.html). Power
was > .80 for adversity x task condition interactions with N = 450 or more. For a linear
main effect, detecting an effect of 5 = 0.15 with .90 power would require N = 462. We
sampled 550 participants, anticipating a final sample of ~500 after exclusions.

Prior to analyzing the data, we applied our preregistered exclusion criteria. First,
we excluded participants who did not complete the full study; second, those who had
incomplete data on any of the attention tasks; third, those who missed both attention
check items; fourth, those who had suspicious response patterns (e.g., consistently en-
dorsing high response options even though some items were reverse coded). Fifth, on
a trial-level, we excluded any trials with reaction times < 250 ms or > 3500 ms (Ratcliff
& Childers, 2015). Participants with more than 10 trials removed were completely ex-
cluded from the analyses. The final sample consisted of 512 participants.
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Procedure

Participants completed the experiment on their own laptop or desktop computer.
Participants could refrain from answering any of the questionnaire items and were
prompted with a warning once per page in case of missing items.

After providing consent, participants completed three attention tasks. They were
asked to move to a quiet room in the house, where they would be unlikely to be dis-
tracted by other people or outside noises. The order of the tasks was counterbalanced
between subjects. At the onset of the first task, the experiment went into full-screen
mode to limit distractions from other programs or browser tabs. The size of the task
stimuli was controlled between subjects using the resize plugin in JsPsych (De Leeuw,
2015). Participants were asked to hold a credit card (or similarly sized card) up against
the screen and to increase the size of a blue rectangle on the screen until it matched
the size of the credit card. The stimulus display for each task was resized so that 100
pixels corresponded to 1 inch for all participants. After successfully resizing the screen,
participants completed all three tasks. During the task, the cursor was hidden from
the screen to minimize distractions. After completing the attention tasks, participants
completed the questionnaire battery and demographic questions. Finally, we asked
participants whether they ever got up or were interrupted during the study, and how
noisy their environment was during the attention tasks. The full experiment took ~35
minutes. Participants were paid £4.38 when they reached the end of the experiment.

Cognitive measures
The attention tasks were programmed in JsPsych version 3.6.1 (De Leeuw, 2015). For
all materials and links to working versions of the tasks, see the Github repository.

Flanker task. The Flanker task measures selective attention and response inhibi-
tion (B. A. Eriksen & Eriksen, 1974). The Flanker task began with eight practice trials,
followed by 64 test trials. On each trial, participants saw a set of five arrows pointing
either left or right. Participants were instructed to indicate the direction of the central
arrow by pressing the respective arrow keys, while ignoring the flanking arrows to the
left and right. All trials included black arrows against a white background. in the con-
gruent trials (50%), the flanking arrows pointed in the same direction as the central
arrow. in the incongruent trials (50%), the arrows pointed in the opposite direction.
The arrows were randomly presented in the top-half or bottom-half of the screen. Each
trial started with a fixation cross (1000 ms), after which the arrows were visible until
aresponse was given. Participants received performance feedback during the practice
trials, but not during the test block.

Cued Attention task. The Cued Attention task was an adapted version of the Pos-
ner task, which measures the speed of attention for peripheral cues (Posner, 1980). The
Cued Attention task began with eight practice trials, followed by 64 test trials. On each
trial, a left- or right-pointing arrow was presented in one of eight random locations
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at 300 pixels from the center of the screen. Participants were instructed to indicate
the direction of the arrow by pressing either the left- or right arrow key on their key-
board. All trials included a black cue and arrow against a white background. On cued
trials (50%), a cue (**') preceded the arrow in the exact same location. On neutral trials
(50%), the cue preceded the arrow, but appeared at the center of the screen (not where
the arrow would appear). Thus, the cue was perfectly predictive of the target location
on cued trials, but provided no predictive information about the location of the arrow
on neutral trials. Each trial started with a fixation cross at the center of the screen for
1000 ms. Then, the cue appeared for 250 ms, followed by the target arrow, until a re-
sponse was given.

Change Detection task. The Change Detection task measures the ability to detect
subtle spatial changes. The Change Detection task started with five practice trials fol-
lowed by 50 test trials. On each trial, participants saw five colored circles (red, light-
blue, dark-blue, yellow, and purple) against a gray background, each with a radius of
15 pixels. Each circle was located in a semi-random location around the central fixation
cross. The location of each circle was sampled within a pre-specified area of 50-by-50
pixels to prevent overlap. Participants had 1000 ms to memorize the locations of the
five circles. Then, the circles disappeared for 500 ms and then reappeared. On change
trials (50%), one of the circles had moved to another location with a fixed displacement
of 40 pixels in a 360 degree direction. On no change trials (50%), all circles were still
in the same location. Participants were instructed to indicate whether all circles were
still in the same location or one of the circles had changed location by pressing the left-
or right-arrow key. The displacement of one circle was the only potential difference on
each trial;

DDM/SSP parameters. We analyzed Flanker task performance with the SSP
model (Grange, 2016; White et al., 2011, 2018; White & Curl, 2018), using the flankr
package (Grange, 2016). For each participant, the SSP provided us with estimates of:
(1) strength of perceptual input (general quality of information that participants get
from the arrows), (2) interference (initial attention width divided by the speed at which
attention is narrowed down to the central arrow), (3) non-decision time (combination
of speed of initial stimulus encoding and response execution), and (4) boundary sepa-
ration (response caution). We always fixed the starting-point to the midpoint between
the two boundaries, as modeling bias makes little sense when the boundaries corre-
spond to correct and incorrect responses (as is the case here), rather than the distinct
response options. Our focus on interference as a ratio between attention width and
shrinking rate deviated from the preregistration, as we initially planned to investigate
both aspects of attention separately. However, we discovered that both parameters in
isolation were unreliable because of an inherent trade-off, while the ratio did provide a
stable measure. This was supported in a simulation study by White et al. (2018) show-
ing that the ratio measure is reliable. See the supplemental materials (section 3) for a
comparison between the preregistered and the updated analyses.
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For the Change Detection task and the Cued Attention task, we used a hierarchi-
cal Bayesian implementation of the standard DDM (HDDM). For each participant, the
HDDM provided us with estimates of: (1) drift rate (speed of information accumula-
tion; analogous to strength of perceptual input in the SSP model, except that drift rate
is time-invariant), (2) non-decision time (same as in the SSP model), and (3) boundary
separation (same as in the SSP model). The hierarchical Bayesian fitting procedure was
a deviation from the preregistration, in which we planned to use Maximum Likelihood
(ML) estimation. There were several issues with estimating DDM parameters for the
Cued Attention task, which we later discovered were caused specifically by ML. An im-
portant difference between HDDM and ML is that HDDM uses the group information to
inform individual parameter estimates, whereas ML models are fitted to each individ-
ual separately. The hierarchical approach generally improves generally improves the
accuracy of the estimation. See the supplemental materials (section 3) for an overview
of the fit procedure and model fit across all studies.

Self-report measures
See Table 4.2 for bivariate correlations between measures of adversity across all stud-
ies.

Violence exposure. We measured violence exposure using the Neighborhood Vi-
olence Scale (NVS) and two items assessing involvement in violence before age 13
(Frankenhuis, Vries, et al., 2020; Frankenhuis & Bijlstra, 2018; Young et al., 2022). The
NVS contains seven items measuring perceived exposure to violence before age 13 (e.g.,
“Crime was common in the neighborhood where I grew up”). Participants rated each on
a scale from 1 (never true) to 5 (very often true). The physical fighting items assessed
the number of times participants witnessed fights before age 13: “Based on your ex-
periences, how many times did you see or hear someone being beaten up in real life,
before age 13?” and “How many times were you in a physical fight, before age 13?” An-
swers to both items ranged from 1 (0 times) to 8 (12 or more times). The items of the
NVS were averaged together (Cronbach’s a: = 0.92). Similarly, we averaged the scores on
the two fighting items together. For the main analyses, we created a perceived violence
exposure composite by standardizing the NVS and fighting composites and calculating
an unweighted average.

Environmental unpredictability. We included five measures of environmen-
tal unpredictability across different temporal scales: (1) the Questionnaire of Unpre-
dictability in Childhood (QUIC; Glynn et al., 2019); (2) the Perceived Childhood Un-
predictability scale (Young et al., 2018); (3) the Confusion, Hubbub, and Order Scale
(CHAOS; Matheny et al., 1995); (4) stability of the family and social environment; and
(5) objective indicators of unpredictability. All scales were adapted to refer to experi-
ences before age 13. We computed a composite measure of all z-transformed unpre-
dictability measures. See section 2 of the supplemental materials for an exploration of
the factor structure of these measures.

94



Childhood adversity is not associated with lowered inhibition, but lower perceptual processing

The QUIC captures environmental and household unpredictability. We made three
preregistered changes to the original scale (Glynn et al., 2019), to better align it with
the other scales. First, all items were rated on a scale of 1 (never true) to 5 (very of-
ten true), except for four items referring to specific experiences (e.g., “I experienced
changes in my custody arrangement”). For these items, we adopted a response scale

» o« » o« » o« » o«

with the options “never”, “only once”, “a couple times”, “several times”, “many times”.
Second, quantifiers such as “frequently”, “often”, and “There was a period of time when
[...]” were dropped to better match the response scale. Third, we excluded the item “My
parents got divorced” because it did not fit the new response labels and this informa-
tion was already captured by one of the items of the perceived unpredictability scale.

Reliability of the scale was high (Cronbach’s a = 0.95).

The perceived childhood unpredictability scale included eight items measuring
perceived unpredictability before age 13 (e.g., “My family life was generally inconsis-
tent and unpredictable from day-to-day”). Participants rated each on a scale from 1 (n-
ever true) to 5 (very often true). Reliability of the scale was high (Cronbach’s o = 0.91).

The CHAOS consists of 15 items measuring the level of chaos in the household (e.g.,
“No matter how hard we tried, we always seemed to be running late”). All items were
rated on a scale of 1 (never true) to 5 (very often true) instead of the original yes/no
answer format. Reliability of the scale was high (Cronbach’s a = 0.93).

We included one additional scale to measure the stability of the family and social
environment. On a scale of 1 (the same all the time) to 5 (constant and rapid changes),
participants indicated how often the following aspects of their family and social en-
vironment changed before age 13: (1) economic status; (2) family environment; (3)
childhood neighborhood environment; and (4) childhood school environment.

Finally, we included four objective measures of unpredictability before age 13: 1)
“How often did you move?”; 2) “How many adults lived in your home on average?”; 3)
“How many romantic partners did your mother have (not counting your father)?”; 4)
“How many romantic partners did your father have (not counting your mother)?”. Pre-
vious studies have found associations between (subsets of) these measures and sub-
jective measures of adversity as well as with developmental outcomes (Belsky et al,,
2012; Ellis et al,, 2009; Young et al., 2022).
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Table 4.2. Pooled bivariate correlations and descriptive statistics of measures of childhood violence exposure and
environmental unpredictability across the three studies,

Violence exposure Environmental unpredictability

1 2 3 4 5 6 7 8 9 10
1. Neigh. violence -
2. Fighting 0.50% -
3. Violence comp. 0.g7*** 0.86**"
4. QUIC 0.52**  0.46™ 0.56™ -
5, Perc. unpredictability 0.36** 0.32** 039" 0.81° -
6. CHAOS 0.46*** 0.41** 050" 084" 079" -
7. Env. change 0.36*** 0.35*** 043"  0.59**" 0.50**" 045" -
8. Obj. unpredictability — 0.39** 0.32** 037" 0.56** 0.56™ 040%™ 073"~ -
9. Subj. Unpredictability 0.47*** 0.44*** 053" 093" 094** 084*° 054** 051"
Somp Predictablity .49+ 0457+ 0537 0.89° 0.87°7 0827 0717 0817 0927
Mean 1.94 1.97 -0.01 213 21 2.41 1.83 -0.01 002  -0.01
sD 0.83 1.34 0.85 0.72 0.98 0.83 0.78 0.69 1.00 0.74
Median 1.71 1.50 -0.28 2.03 1.88 2.33 1.75 -0.21 020  -017
Min 1.00 1.00 -0.98 1.00 1.00 1.00 1.00 -0.85 -1.59  -1.15
Max 5.00 8.00 3.99 4.84 5.00 4.87 5.00 5.37 3.46 3.97
Skew 1.36 2.03 1.48 0.65 0.81 0.40 1.35 2.35 0.63 1.08
Kurtosis 1.65 4,67 2.34 0.05 -0.27 -0.45 2.08 8.04 -0.21 1.52

Note: *=p < .05, "™ =p < .01, " = p < .001. CHAOS = Chaos, Hubbub, and Order Scale;

Env. change = environmental chan%;e; Obj. unpredictability = objective unpredictability;

Neigh. violence = neighborhood viclence; Perc. unpredictability = perceived unpredictability;

QUIC = Questionnaire of Unpredictability in Childhood; Subtj. unpredictability = subjective unpredictability;

SD = standard deviation; Unpredictability comp. = unpredictability composite; Violence comp = violence composite.

Data analyses

Multiverse analysis. In an amendment to the preregistration, we quantified the ro-
bustness of our findings against six data cleaning decisions that may affect the robust-
ness of online studies by using multiverse analysis, using the multitool package (Young
& Vermeent, 2023). Multiverse analysis allows for systematically evaluating the robust-
ness of analyses across all combinations of different arbitrary data processing deci-
sions (for details, see Del Giudice & Gangestad, 2021; Simonsohn et al., 2020; Steegen
et al,, 2016). Specifically, we looked at the influence of including or excluding 1) par-
ticipants who scored below 0.5 on a build-in bot-detection measure on Prolific (poten-
tially indicating a bot); 2) participants who did not rescale their screen at the start of
the experiment; 3) participants who did not enter fullscreen mode prior to starting the
tasks; 4) participants who exited fullscreen mode at any point during the tasks; 5) par-
ticipants who indicated high levels of noise in their environment; 6) participants who
indicated extreme interruptions during the experiment. See the supplemental materi-
als (section 5) for figures summarizing p-distributions and the explained variance in
the regression coefficients of each data cleaning decision.

Confirmatory analyses. For the Cued Attention and Flanker task RTs, we used
linear mixed effects models to test violence exposure x task condition (sum-coded) in-
teractions on mean RTs (calculated separately for each condition) and each DDM para-
meter. All mixed effects models included a random intercept for participants. For the
Change Detection and Flanker task SSP parameters, we used linear regression models
to test the main effect of adversity on mean RTs and each DDM/SSP parameter. We did
not analyze accuracy rates as these were close to ceiling for the Flanker and Cued Atten-
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tion task. To meet model assumptions of normally distributed residuals, mean reaction
time were log-transformed, separately for the congruent and incongruent condition.
Analyses involving interference (Flanker task) and boundary separation (all tasks) pa-
rameters violated the assumption of normally distributed residuals. For boundary sep-
aration, we solved this using log-transformation. For interference, non-normality was
caused by extreme outliers (>3.25D), which we excluded from the analyses.

Results and discussion

Table 4.3 summarizes the results. In the flanker task, more violence exposure was as-
sociated with lower strength of perceptual input under 31.25% of multiverse specifi-
cations (although the median 95% CI interval contained zero). We additionally found
a significant main effect of violence exposure on interference under 100.00% of multi-
verse specifications, such that more violence exposure was associated with less inter-
ference. This was contrary to our expectation that people exposed to adversity would
have more difficulties dealing with interference from irrelevant distractors.

Participants with more exposure to childhood violence were slower in the Cued
Attention task, which was mainly related to a higher level of response caution (bound-
ary separation). in the Change Detection task, more childhood violence exposure was
associated with slower speed of information processing (drift rate) under 50.00% of
multiverse specifications, but not with longer RTs. These results were not in line with
our expectation that people from adversity would perform better on cognitive tasks
that require a broad, present-focused attention style.

Exploratory analyses did not show any significant associations with Flanker task
performance. Participants with more exposure to childhood unpredictability were
slower in the Cued Attention task (main effect) (median 8 =0.11,95% CI =[0.02, 0.19],
81.25 % of ps <.05), which was related to slower non-decision time (median 8 = 0.10,
95% CI=[0.02,0.17],100.00 % of ps <.05). We did not find a significant association be-
tween exposure to childhood unpredictability and mean RTs on the Change Detection
task, although more unpredictability was negatively associated with drift rates (me-
dian 5 =-0.10,95% CI =[-0.20, -0.00], 53.12 % of ps <.05).
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Table 4.3. Main and interaction effects of the effect of violence exposure on task performance.

Main Effect Interaction

B 95% ClI P (%) B 95% ClI P (%)
Cued Attention Task
Raw response time 0.10 [0.01,0.19] 67.19 0.01 [-0.01,002] 0O
Drift rate 0.00 [-0.08,0.09] 0.00 -0.04 [-0.08,0.01] 31.25
Non-decision time 0.06 [-0.03,0.13) 0.00 -0.02 [-0.07,0.02] 9.375
Boundary separation 0.10 [-0.01,0.20] 43.75
Change Detection Task
Raw response time 0.05 [-0.05,0.18] 0.00
Drift rate -0.10 [-0.20, 0.00] 50.00
Mon-decision time -0.04 [-0.14,0.06] 0.00
Boundary separation 0.05 [-0.05, 0.16] 12.50
Flanker Task
Raw response time 0.05 [-0.04,0.14]  0.00 -0.02 [-0.04,-0.00] 100
Perceptual input -0.08 [-0.18,0.02] 31.25
Interference -0.17 [-0.26, -0.07] 100.00
Non-decision time 0.06 [-0.04,0.17] 15.62
Boundary separation -0.03 [-0.13,0.07] 0.00

Note: The p (%) column reflects the number of analyses that produced p-values < .05 for a given multiverse.

The pattern of findings in the Flanker task was interesting for two reasons. First,
the Flanker task is a widely used task to assess the ability to inhibit irrelevant informa-
tion, and people exposed to adversity typically show lowered performance. Our pilot
results, though, suggest that lowered performance may not be caused by a reduced abil-
ity to inhibit distracting information. Instead, people exposed to adversity might have
a lower strength of perceptual input, leading to slower and less efficient information
processing. If true, these initial findings suggest that performance might be improved
through interventions that increase the visual quality of stimuli. In Study 1, we aimed
to replicate and extend these findings.

4.3 Study |

The goal of Study 1 was to follow up on the Pilot study by manipulating the visual qual-
ity ofinformation in the Flanker task. Participants completed three versions: a standard
version (similar to the Pilot study), one with enhanced visual information, and one with
degraded visual information. We again focused on childhood exposure to violence. Our
first aim was to examine the robustness of our finding of improved interference con-
trol in the Flanker task in relation to more adversity exposure in the Pilot study. We
did so by analyzing the data of the standard condition, as well as by pooling the data of
the Pilot study and Study 1. Our second aim was to investigate whether manipulating
visual information in the Flanker task would influence performance for people with
more violence exposure.

We preregistered two potential data patterns and associated interpretations,
without favoring one over the other a priori. First, the strength of perceptual input
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might be lower for people with more exposure to violence compared to people with
less exposure to violence across all conditions. Second, lower performance in the stan-
dard version might reflect an adaptive trade-off towards cognitive functioning that is
less affected by noise or perturbations, at a cost of lower overall performance (Del Giu-
dice & Crespi, 2018). In that case, we would expect the strength of perceptual input
to be influenced to a lesser extent across conditions for people with more exposure
to violence than for people with less exposure to violence. As a result, they might not
benefit as much from enhanced visual information, yet might be able to better maintain
performance with degraded information.

Methods

Participants

Participant recruitment was identical to the Pilot study. In total, 567 people from the
United States between the ages of 18 and 30 participated (See Table 4.1). We obtained
ethical approval from the Ethics Review Board of the Faculty of Social & Behavioral
Sciences of Utrecht University (FETC20-490). We applied the same exclusion criteria
as reported in the Pilot study. The final sample consisted of 497 participants.

Flanker task

We programmed the Flanker task in JsPsych version 6.3.1 (De Leeuw, 2015) with three
conditions. Each condition consisted of eight practice trials, followed by 64 test tri-
als. In the standard condition, the arrows were 40 pixels in size (0.4 inches) and had
zero padding between them. In the enhanced condition, we increased the arrow size
by 12.5% to 45 pixels (0.45 inches), and increased the space between the arrows to
5 pixels. This increased the width of the stimulus display by 50% with respect to the
standard display. In the degraded condition, sizes and space between arrows were the
same as in the standard version, but all arrows were rotated 45°. The lines of the arrows
always had the same 45° angle. For example, if the flanking arrows pointed to the up-
per-left on an incongruent trial, the central arrow pointed to the lower-right. On con-
gruent trials, all arrows pointed in the same direction (e.g., upper-right). Participants
completed each condition separately in different blocks, in randomized order.

Self-report measures
The self-report measures were identical to those used in the Pilot study.

Procedure
The procedure was identical to the Pilot study. The full experiment took approximately
30 minutes. Participants were paid £3.75 after they completed the full study.

Data analyses

Multiverse analysis. We included the same arbitrary decisions in the multiverse
analyses as in the Pilot study. For the pooled analyses—i.e., joint analysis of the Pilot
study and the standard condition of Study 1—there was one minor change in how we
included screen rescaling as a preprocessing decision in the multiverse. In Study 1, we
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changed the screen rescaling procedure by converting the initial size of the resize box
to 300 pixels instead of 100 pixels. This way, the stimulus display would still be close
to the intended size if participants did not engage in any resizing. However, this led to
one important change for the pooled analysis: rescaling (yes or no) was included as an
arbitrary exclusion decision in the multiverse analyses with four combinations: (1) ex-
clude non-scalers in both studies; (2) include non-scalers in both studies; (3) exclude
non-scalers in the Pilot study, include non-scalers in Study 1; (4) include non-scalers
in the Pilot study, exclude non-scalers in Study 1.

For each analysis, we report the median s, 95% confidence intervals, and the pro-
portion of p-values < .05 across all analytic decisions. For the confirmatory analyses,
we used bootstrapping to compute the probability of obtaining an effect size at least as
extreme as observed in the real data, conditioned on a true effect size of zero (for de-
tails, see Simonsohn et al., 2020). See the supplemental materials (section 5) for figures
summarizing p-distributions and the explained variance in the regression coefficients
of each data cleaning decision.

Confirmatory analyses. To address the first aim, we analyzed the data from the
standard condition, as well as pooled the Flanker task data of the Pilot study and the
current study. We ran separate linear models for each SSP parameter as well as RT dif-
ference scores (based on log-transformed mean RTs of each condition) with violence
exposure as main predictor and study as covariate (effect-coded). To address the sec-
ond aim, we analyzed the effect of violence exposure and Flanker task condition type
on performance using linear mixed effects models with a random intercept per par-
ticipant. The five main dependent variables were mean RT difference (based on log-
transformed mean RTs of each condition) and the SSP parameters: Perceptual input,
boundary separation, non-decision time, and interference. For each outcome measure,
we ran two separate models: one comparing the standard condition with the enhanced
condition, and one comparing the standard condition with the degraded condition. In
both models, condition was dummy-coded using the standard condition as the refer-
ence group.

The use of RT difference scores differed from the Pilot study, where we included
task condition as a moderator. We opted for RT difference scores here (as well as in
Study 2) to prevent the use of three-way interactions, for which we did not have enough
power.

Results and discussion

Standard Flanker performance

Table 4.4 summarizes the multiverse results for the effects of violence exposure (confir-
matory analysis) and unpredictability (exploratory analysis). Unlike in the Pilot study,
we did not find any significant associations with violence exposure. In the exploratory
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analysis, there was a significant negative association between unpredictability and per-
ceptual input (median 8 =-0.12,95% CI =[-0.22, -0.03], 100.00 % of ps <.05).

Table 4.4, Standardized effects of violence exposure and unpredictability on Flanker
performance in study 1.

B 95% ClI p (%) p

Violence exposure (confirmatory)

RT Siterance 0.04 [-0.08, 0.13] 0.00 AT6
Perceptual input -0.02 [-0.12, 0.07] 0.00 596
Interference 0.02 [-0.07,0.12] 0.00 .630
Non-decision time -0.01 [-0.10, 0.09] 0.00 .850
Boundary separation 0.03 [-0.07,0.12] 0.00 542
Unpredictability (exploratory)

RT giftarence -0.03 [-0.12, 0.07] 0.00 .596
Perceptual input -0.12 [-0.22, -0.03] 100.00 .046
Interference 0.09 [-0.01,0.18] 34.38 126
Non-decision time -0.03 [-0.12, 0.07] 0.00 592
Boundary separation -0.04 [-0.14, 0.05] 0.00 .362

Note: The p (%) column reflects the number of analyses that produced p-values < .05 for
a given multiverse, We computed overall p-values using a bootstrapped resampling
method, which reflect the probability of obtaining an effect size as extreme or more
extreme given the median effect is 0.

After pooling the data of the Pilot study and Study 1, there was a negative associ-
ation between violence exposure and interference (median 8 =-0.07,95% CI = [-0.14,
-0.00], 64.06 % of ps <.05, bootstrapped p = .028). Violence exposure was associated
with lower strength of perceptual input under 64.06% of multiverse specifications, but
the bootstrapped p-value was not significant (median g =-0.05,95% CI =[-0.12, 0.01],
bootstrapped p = .100). We did not find other significant associations for either vio-
lence exposure or unpredictability.

Flanker task conditions

The main effects of task condition on the strength of perceptual input were in the ex-
pected direction: relative to the standard condition, the quality of perceptual input was
higher in the enhanced condition (median 8 = 0.09, 95% CI = [0.04, 0.13], 100.00 %
of ps <.05) and lower in the degraded condition (median 8 = -0.13, 95% CI = [-0.18,
-0.08], 100.00 % of ps <.05). Interference was lower in the enhanced condition (me-
dian g = -0.26, 95% CI = [-0.31, -0.21], 100.00 % of ps <.05). Unexpectedly, interfer-
ence was also lower in the degraded condition (median g = -0.10, 95% CI = [-0.16,
-0.04], 100.00 % of ps <.05), suggesting that the angle in the flanking arrows reduced
interference, relative to the standard condition. However, none of the interaction effects
for either violence exposure or unpredictability were significant (Table 4.5).
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Table 4.5, Standardized interaction effects of violence exposure (confirmatory analysis) and

unpaetdlctabillty (secondary analysis) on Flanker performance across standard, enhanced, and degraded
conaitions.

Violence exposure X Condition Unpredictability X Condition
B 95% ClI (%) B 95% ClI p (%)

Standard - Enhanced
RT -0.01 [-0.06, 0.04] 0.00 -0.03 [-0.08, 0.02] 3.12
Perceptual input 0.03 [-0.01, 0.08] 0.00 0.02 [-0.03, 0.07] 0.00
Interference -0.01 [-0.06, 0.04] 0.00 -0.04 [-0.08, 0.01] 25.00
Non-decision time 0.00 [-0.05, 0.05] 0.00 0.02 [-0.03, 0.07] 0.00
Boundary separation 0.01 [-0.04, 0.06] 0.00 0.00 [-0.05, 0.06] 0.00
Standard - Degraded
RT 0.03 [-0.03,0.09] 6.25 -0.01 [-0.07, 0.05] 0.00
Perceptual input 0.01 [-0.04, 0.06] 0.00 0.04 [-0.02, 0.09] 0.00
Interference 0.01 [-0.05, 0.06] 0.00 -0.03 [-0.08, 0.02] 4.69
Non-decision time -0.02 [-0.07,0.04] 0.00 -0.02 [-0.07, 0.04] 0.00
Boundary separation 0.03 [-0.03, 0.08] 0.00 0.04 [-0.02, 0.10] 0.00

Note: Task conditions were dummy-coded with the standard condition as the reference, The p (%)
column reflects the number of analyses that produced p-values < .05 for a given multiverse.

The results of the Pilot study and Study 1 were inconsistent with regard to the
association between adversity and interference, but hinted at two general patterns.
First, violence exposure was not associated with increased interference; instead, we
found either the opposite effect or no effect. Second, both violence exposure and unpre-
dictability were associated with lowered strength of perceptual input, albeit inconsis-
tently. These findings, if replicable, are intriguing as they would suggest that the com-
mon finding of lowered Flanker task performance among people with more adversity
exposure do not actually result from worse interference control—as typically inferred.
Rather, such lowered performance would result from processes other than inhibition
ability, such as slower general processing. Though interesting, our findings so far leave
open the question why adversity might be negatively associated with perceptual input.
This question was the focus of Study 2.

4.4 Study 2

Study 2 set out to compare two explanations for the finding that people exposed to ad-
versity tended to show lower strength of perceptual input in the Flanker task. First,
lowered strength of perceptual input in people exposed to adversity may indicate a dif-
ficulty in extracting relevant information (i.e., about their direction) from the arrows
in general. Second, the difference in perceptual input may not be a cognitive deficit per
se, but instead could be a signature of a difference in processing style—that is, a fea-
ture, and not a bug. People exposed to adversity may process information more holis-
tically, focusing more on the configuration of pieces of information rather than individ-
ual pieces of information. in the Flanker task, this would lower the depth of perceptual
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processing of any individual stimulus, thus resulting in lowered strength of perceptual
input, as we observed in the Pilot study and Study 1.

We preregistered three aims focusing both on violence exposure and unpre-
dictability. First, we expected to replicate our earlier findings that adversity was asso-
ciated with lowered perceptual input and lower interference in people exposed to ad-
versity. Second, we included a Global-Local task to investigate the hypothesis—based
on the findings of the Pilot study and Study 1—that people with more adverse experi-
ences would develop a more holistic style of information processing. Third, we planned
to conduct a within-subjects analysis of Flanker and Global-Local task performance to
assess whether people with lowered perceptual input in the Flanker task would also
show a more global processing style (rather than a local processing style) in the Global-
Local task.

Methods

Participants

Participants were 600 people from the United States between the ages of 18 and 30.
Recruitment was identical to Study 1. We obtained ethical approval from the Ethics
Review Board of the Faculty of Social & Behavioral Sciences of Utrecht University
(FETC20-490). We conducted a simulation-based power analysis for the planned linear
mixed models with the Global Local task (see GitHub). We determined that power of
> .80 for a standardized interaction effect of 0.06, with sigma (noise) set to 0.7 (compa-
rable to observed sigmas in the first two studies) would require 550 participants. We
recruited 600 participants, with the expectation to have a final sample of 550 partici-
pants after exclusions. We applied the same exclusion criteria as reported in the Pilot
study and Study 1. The final sample consisted of 551 participants.

Measures
The measures of childhood violence exposure and environmental unpredictability
were identical to Study 1. The Flanker task was identical to the standard version used
in Study 1.

Global-Local task. The Global-Local task is a measure of global-local processing
(Navon, 1977). Many different versions of this task exist in the literature. One key di-
mension on which they differ is whether the task measures focused attention (by cue-
ing attention towards the global or local level prior to stimulus presentation) or divided
attention (by having participants search for a target on both levels) (Lee et al., 2023).
Here, we use a version measuring divided attention, which allows measuring whether
someone tends to have a more global versus local processing style (Hakim et al., 2017;
Lee et al,, 2023; McKone et al., 2010).

Participants saw images of big, black letters (the global level) comprising small
letters (the local level)—so-called Navon images (Navon, 1977)—against a white back-
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ground. Participants first completed eight practice trials, after which they completed
an additional 64 test trials. On each trial, participants searched for one of two target
letters—an ‘E’ or ‘H’—and indicated whether it was present on the global or local level
by pressing ‘g’ or ‘I’ on their keyboard, respectively. Each stimulus was 600 pixels high
and 395 pixels wide and comprised seven local letters vertically and five local letters
horizontally. The stimuli consisted of combinations of the letters “T’, ‘F’, ‘P’ ‘'L, ‘H’, and
‘E’. All stimuli always contained one (and only one) of the target letters ‘H’ and ‘E’ on
either the local or global level. The other letters were randomly varied, and the global
and local level never contained the same letter. Thus, the global-local task did not con-
tain a congruent and incongruent condition as did the Flanker task.

Procedure
The procedure was identical to Study 1. The full experiment took ~30 minutes. Partic-
ipants were paid £4.50 when they reached the end of the experiment.

Data analyses

Multiverse analysis. We included the same decisions in the multiverse as in the pre-
vious studies. However, there was one deviation from the preregistration: the multi-
verse analysis contained the same arbitrary decisions as the Pilot study and Study 1,
instead of a subset, as we preregistered (for details, https://stefanvermeent.github.
io/attention_project/preregistrations/README.html). See the supplemental materi-
als (section 5) for figures summarizing p-distributions and the explained variance in
the regression coefficients of each data cleaning decision.

DDM estimation. For the Flanker task, we used the SSP (Grange, 2016; White et
al, 2011, 2018; White & Curl, 2018) using the same procedure as in Study 1. For the
Global-Local task, we used a hierarchical Bayesian DDM to fit the data using the runjags
package (Denwood, 2016). See the supplemental materials (Section 3) for more infor-
mation about the procedure and model fit.

We deviated from our preregistration regarding the preprocessing of Global-Local
task data. Specifically, we relaxed the low performance threshold as the task was more
difficult than anticipated. These deviations are described in the supplemental materi-
als (section 4).

Confirmatory analyses. We ran simple regressions for analyses involving only
main effects (aim 1), and linear mixed effects models for analyses involving within-sub-
ject interactions (aim 2 and 3). To address aim 3 (within-subject interaction between
Global-Local task drift rate and Flanker task strength of perceptual input), we further
preprocessed the data in two steps. First, we computed a difference score of Global-
Local drift rates by subtracting the drift rate on local trials from the drift rate on global
trials (with higher scores reflecting relatively faster information processing on global
trials). Second, we separately standardized the Flanker task strength of perceptual in-
put and Global-Local task drift rate difference. We fitted linear mixed effects models
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with the standardized performance measures as the dependent variable, and adversity
type, task (Flanker task or Global-Local task, sum-coded) and their interaction as inde-
pendent variables.

Results and discussion

Figure 4.2 and 4.3 summarize the multiverse results for the effects of violence exposure
and unpredictability within Study 2 and pooled across all studies. In Study 2, violence
exposure was negatively associated with strength of perceptual input (Smedian = —0.18,
95% CI = [-0.26, -0.09], 100.00 % of ps < .05, bootstrapped p <.001), but not associ-
ated with interference (Bmedian = —0.04, 95% CI = [-0.14, 0.05], 0.00 % of ps < .05, boot-
strapped p = .672). Unpredictability was not associated with either strength of percep-
tual input (Bmedian = —=0.05, 95% CI = [-0.15, 0.04], 3.12 % of ps < .05, bootstrapped p
=.026), nor with interference (Bmedian = 0.03, 95% CI = [-0.06, 0.12], 0.00 % of ps < .05,
bootstrapped p =.142).

In the pooled analysis, the results were similar for both types of adversity. Violence
exposure was associated with lower strength of perceptual input (Bmedian = =0.10, 95%
CI=[-0.17,-0.04], 100.00 % of ps < .05, bootstrapped p <.001), but not with interfer-
ence (Bmedian = —0.01, 95% CI = [-0.08, 0.05], 0.00 % of ps < .05, bootstrapped p =.672).
Similarly, unpredictability was associated with a lower quality of perceptual input (8
median = —0.08, 95% CI = [-0.15, -0.02], 95.31 % of ps < .05, bootstrapped p =.026), but
not with interference (Bmedian = 0.05, 95% CI = [-0.01, 0.12], 0.00 % of ps < .05, boot-
strapped p =.142).

Global-Local task performance

There was a main effect of violence exposure on Global-Local drift rates, with more vi-
olence exposure being associated with slower speed of information processing (Smedian
=-0.19, 100.00% of ps < .05, bootstrapped p < .001). There also was a main effect of
task condition on drift rates, with people processing information faster when the target
was present at the global level compared to the local level, (Bmedian = 0.05, 100.00% of ps
<.05, bootstrapped p <.001). Finally, there was an interaction effect between violence
exposure and task condition (Buedian = 0.04, 95.31 % of ps <.05, bootstrapped p =.038).
Simple slopes analyses revealed that participants with lower levels of violence expo-
sure did not differ in speed of processing of global versus local targets (bmedian = 0.01,
0.00% of ps < .05). In contrast, participants with higher levels of violence exposure
processed global targets faster than local targets (bmedian = 0.08, 100.00% of ps <.05).

There was a significant main effect of unpredictability on drift rates, with more
unpredictability being associated with slower speed of information processing, (Smedian
=-0.10,95% CI = [-0.20, -0.01], 62.50 % of ps < .05, bootstrapped p = .024). We also
found a main effect of task condition on drift rates, with people processing information
faster when the target was present at the global level compared to the local level, (8
median = 0.05, 95% CI =[0.02, 0.08], 100.00 % of ps <.05, bootstrapped p <.001). We did
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Figure 4.2. Multiverse results for the association between violence exposure with the strength of
perceptual input and interference in the Flanker across all studies. Each panel depicts sorted beta coef-
ficients across all combinations of arbitrary decisions (i.e., the effect curve across the whole multiverse).
The top row depicts effect curves in the Pilot study. The second row depicts effect curves in Study 1. The
third row depicts effect curves in Study 2. The fourth row depicts effect curves of the pooled analyses

across all studies.

not find a significant unpredictability x task condition interaction effect (Smedian = 0.03,

95% CI =[-0.00, 0.06], 37.50 % of ps < .05, bootstrapped p =.100).
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Figure 4.3. Multiverse results for the association between unpredictability with the strength of
perceptual input and interference in the Flanker task across all studies. Each panel depicts sorted beta
coefficients across all combinations of arbitrary decisions (i.e., the effect curve across the whole mul-
tiverse). The top row depicts effect curves in the Pilot study. The second row depicts effect curves in
Study 1. The third row depicts effect curves in Study 2. The fourth row depicts effect curves of the pooled
analyses across all studies.
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Within-subjects comparison of Flanker and Global-Local task information pro-
cessing

There were no significant main effects for violence exposure (bootstrapped p = .486)
nor for cognitive task (bootstrapped p =.486). There was a significant interaction effect
(Brmedian = 0.15,95% CI =[0.08, 0.21], 100.00 % of ps < .05, bootstrapped p <.001) (See
Figure 4.4). A simple slopes analysis revealed that people with higher levels of violence
exposure showed lower strength of perceptual input in the Flanker task (b = -0.17,
100.00% of ps < .05), and showed a more global versus local processing style in the
Global-Local task (b = 0.13,92.19% of ps <.05).

There was no significant main effect for unpredictability (bootstrapped p = .414).
However, there was a significant interaction effect (Bmedian = 0.08, 95% CI = [0.01, 0.14],
67.19 % of ps <.05, bootstrapped p = .044). A simple slopes analysis revealed that peo-
ple with higher levels of unpredictability did not differ in their strength of perceptual
input in the Flanker task (b = -0.05, 3.12 % of ps <.05), but showed a more global ver-
sus local processing style in the Global-Local task (b = 0.09, 34.38% of ps <.05).

To sum up, Study 2 provided additional support for the basic finding that violence
exposure and unpredictability were associated with lower strength of perceptual input
but not with differences in interference; with the caveat that the associations for unpre-
dictability only showed up in pooled analyses. People with more exposure to violence
and unpredictability also processed information more slowly in the Global-Local task.
In line with our expectations, childhood exposure to violence was associated with both
lowered strength of perceptual input and a more holistic processing style. The same
processing style was observed for participants with more exposure to unpredictability,
although they did not show lowered strength of perceptual input.

4.5 Exploratory analyses

We hypothesized that the potential adaptive benefits of a more diffuse scope of atten-
tion in adverse conditions might be linked to the notion of a present-oriented attention
style (Frankenhuis et al,, 2016; Van Gelder & Frankenhuis, 2024). People with a pre-
sent-oriented attention style (versus a more future-oriented attention style) are more
geared towards processing information that is relevant for solving challenges and ob-
taining rewards in the here-and-now. A general tendency to be more attuned to the pre-
sent (while disregarding the future) is sometimes referred to as a short-term mindset
(Kiibel et al., 2023; Van Gelder & Frankenhuis, 2024), which also includes tendencies
to be more impulsive, to more steeply discount future rewards, and to be more sensa-
tion-seeking. Although short-term mindsets are associated with exposure to adversity
(Ganschow et al., 2023), it is unclear how they are associated with performance on at-
tention tasks. We explored bivariate correlations pooled across all studies between two
indicators of short-term mindsets (impulsivity and future orientation) and SSP para-
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Figure 4.4. Multiverse results for the within-subjects comparison of Flanker and Global-Local task
information processing. Panel A depicts the multiverse interaction effects, with the thick black lines de-
noting the median slope and the thin lines denoting effects for each combination of arbitrary decisions.
Blue thin lines indicate significant effects (p >.05), and grey thin lines indicate non-significant effects
(p >.05). Panel B depicts sorted beta coefficients across all combinations of arbitrary decisions (i.e., the
effect curve across the whole multiverse). See the main text for more information about the multiverse
analyses.

meters of the Flanker task (for more information on the measures, see section 1 of the
supplemental materials).
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See Table A2.2 for an overview of the correlations. Impulsivity was negatively as-
sociated with the strength of perceptual input (r=-.07, p =.004) and positively associ-
ated with interference (r = .09, p = .005). In addition, impulsivity was also associated
with a more holistic information processing style (r = .11, p = .020). Thus, more im-
pulsive participants processed information less deeply and were more easily drawn
to distractions, but this might partly be explained by a holistic information processing
style. Similarly, future-orientation was positively associated with perceptual input (r
=.09 p <.001)—but not with interference (p =.112)—in the Flanker task, and was also
associated with a more detail-oriented processing style (r=-.12, p =.011). Thus, more
future-oriented participants processed information more deeply, which might partly
be explained by a detail-oriented processing style.

4.6 General discussion

We investigated how two dimensions of childhood adversity—violence exposure and
environmental unpredictability—are related to differences in how people attend to and
process information. Specifically, we hypothesized that exposure to adversity might
lead to a present-oriented attention style that would facilitate rapidly detecting novel
or changing information, yet which would interfere with ignoring distractors. Across
one Pilot study and two main studies, we tested how adversity was associated with
performance on different attention tasks. The Pilot study compared performance on a
Cued Attention task, Change Detection task, and a Flanker task. Two follow-up studies
focused in the Flanker task, with Study 2 also including a Global-Local task. We lever-
aged DDM to estimate the processes underlying lowered and improved performance.
This allowed us to investigate whether performance differences were associated with
abilities that are typically the main focus when using these tasks (i.e., attention orien-
tation, interference control, information accumulation), or with other processes (e.g.,
stimulus encoding, response execution, response caution). Across all confirmatory and
exploratory analyses, we leveraged multiverse analysis to systematically assess the ro-
bustness of our findings against several uncontrollable aspects of the online assess-
ment (e.g., distractions, fullscreen exits).

Main insights

We found little to no support for the presence of a present-oriented attention style in
people exposed to adversity. More childhood exposure to violence was associated with
slower processing of subtle changes in the Change Detection task and lower quality of
perceptual input in the Flanker task. It was not associated with speed of processing
of peripheral information in the Cued Attention task. Zooming in in the Flanker task,
our two main studies found mixed evidence for the hypotheses that violence exposure
and unpredictability were associated with lower strength of perceptual input. This
mixed evidence suggests that people with more exposure to these adversities process
information less deeply, leading to slower responses on congruent and incongruent
trials in equal measure. This was corroborated by the pooled analyses across studies,

110



Childhood adversity is not associated with lowered inhibition, but lower perceptual processing

which found that both exposure to violence and unpredictability were associated with
lower strength of perceptual input, but not with differences in the ability to inhibit dis-
tractors. This finding contradicts the standard deficit interpretation of lowered perfor-
mance on inhibition tasks by people with more adversity exposure (discussed below).
In addition, lowered strength of perceptual input was associated with a holistic pro-
cessing style. Thus, we did not find evidence that people with more violence exposure
have more difficulties with inhibiting task-irrelevant information.

Our findings of the DDM decomposition of Flanker task performance challenge
previous interpretations based on raw performance. Previous studies have found that
people exposed to adversity and/or low SES backgrounds have longer RTs on incon-
gruent trials relative to congruent trials (Farah et al., 2006; Fields et al., 2021; Mezza-
cappa, 2004; Mittal et al,, 2015; Noble et al., 2005), which is commonly interpreted as
an impaired ability to inhibit irrelevant information. This fits with adaptive hypothe-
ses, as inhibition is assumed to be useful mostly in stable and predictable environment
that afford long-term goal pursuit, but can be costly in unpredictable and potentially
dangerous environments (Daly & Wilson, 2005; Fields et al., 2021; Mittal et al., 2015).
Contrary to previous studies, we found little to no evidence for performance differences
on the basis of raw RTs. In addition, our DDM analyses showed that performance dif-
ferences in the Flanker task are not driven by differences in interference control, but
by more basic processes that are not typically considered when interpreting Flanker
task performance. Although we are not aware of similar findings in the literature on
adversity, comparable conclusions have recently been drawn in research on cognitive
functioning related to depression and autism (Grange & Rydon-Grange, 2022; Merkt et
al,, 2013; Poole et al., 2024).

Our findings align with a broader literature that is critical of the validity of the
Flanker task in particular, and that of cognitive control tasks more generally. As noted,
several studies have failed to find coherent correlations between raw performance
on different cognitive control tasks (e.g., Loffler et al., 2024; Rey-Mermet et al., 2019;
Rouder & Haaf, 2019; Stahl et al., 2014). For example, previous research comparing
several cognitive control tasks across different data sets using cognitive modeling
found that shared variance between these tasks was mostly associated with processing
speed and strategies (e.g., speed-accuracy trade-offs) (Hedge et al., 2022). Moreover,
the modeling parameters reflecting conflict processing (similar to interference in our
study) were barely correlated. Similarly, previous work has shown that individual dif-
ferences on common EF tasks—among which the Flanker task—can be fully accounted
for by general processing speed (Loffler et al.,, 2024). This literature, together with the
findings reported here, underscore that researchers should be cautious when drawing
inferences about cognitive control abilities in people exposed to adversity based on raw
RTs and performance on individual tasks.
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Finally, we showed that people exposed to adversity had a more holistic process-
ing style, and that this style was associated with lower strength of perceptual input in
the Flanker task. This could mean that people with more adversity exposure processed
the Flanker task display more holistically; that is, focused less on individual arrows and
more on the collection of arrows as a whole. One (tentative) interpretation is that in
the absence of threatening or otherwise salient information, people with more expo-
sure to adversity attend to and process information in the environment globally and
less deeply. They might only shift to local processing of a single source of information
if it seems threatening or otherwise salient (Schwabe et al., 2013; Shields et al., 2015).
This would be consistent with research showing that growing up in a disadvantaged
environment decreases the efficiency of the brain’s (resting-state) salience network,
which is in turn associated with lower raw performance on certain cognitive tasks
(Cermakova et al., 2023; Gellci et al., 2019; Hilger et al., 2017; Yuan et al., 2012). This
research also shows that in situations of acute stress, mental resources are reallocated
to this salience network, increasing vigilance and facilitating adequate responding. In-
deed, a few studies show that cognitive abilities that may be particularly relevant in
adverse contexts—such as attention shifting and working memory updating—may be
enhanced in people from adversity when they experience acute stress (Mittal et al,,
2015; Young et al,, 2018).

We did not control for (potentially) confounding variables in our models, even
though variables like education, intelligence, and current adversity exposure generally
correlate with both childhood adversity exposure and performance on the Flanker task.
Our reason for not including them as covariates was that all these factors can be rea-
sonably seen as mediators of the association between childhood adversity and cogni-
tive performance. However, they are unlikely (or even impossible) causes of childhood
adversity. Therefore, adjusting for these variables could have introduced bias to our
estimation of the total effect of childhood adversity on performance (which was our
estimand) (Rohrer, 2018). That said, one way in which our analyses may have been
confounded is by using retrospective measures of adversity. For example, some work
suggests that current psychopathology may bias retrospective reports of childhood
adversity, although the causal pathways are still mostly unclear (Francis et al., 2023;
Goltermann et al,, 2023; Nivison et al., 2021; Patten et al,, 2015). Systematic investi-
gations into potential confounders will ultimately improve our understanding of the
effects of early adversity (Ning et al., 2023).

Strengths, limitations, and future directions

Our study has three main strengths. First, each study included socioeconomically di-
verse participants. Second, the DDM allowed us to decompose performance in a more
nuanced way than is possible with (typically used) raw performance scores. Third, the
multiverse analyses provided a systematic overview of the robustness of our findings
under different analytical decisions. Our study has three main limitations. First, all ex-
periments were conducted online, which reduced control over people’s testing envi-
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ronment, equipment, and behavior. Indeed, our results were the least robust against
participants who skipped the screen-scaling procedure (to ensure the stimuli were ad-
equately sized) and interruptions during the tasks, which are factors that are largely
out of our control. Second, we deviated from our preregistrations in several ways in all
studies, due to progressive insight. This decreased the severity of our statistical tests,
and so this work would benefit from preregistered replications (Lakens, 2024).

Our findings suggest two main directions for future research. First, future studies
could replicate and expand upon our finding that lower quality of information process-
ing in people exposed to adversity is associated with a more holistic processing style.
For example, future work could investigate whether people with more adversity expo-
sure shift from holistic to a detail-oriented processing in situations of acute stress or
otherwise salient information. Second, our results suggest that lower strength of per-
ceptual input is likely the result of both processing styles, as well as of slower general
processing. Future research could try to tease apart these sources using a within-sub-
jects design simultaneously measuring inhibition, processing styles, and basic process-
ing speed. Third, some research suggests that inhibition is not a unitary construct, in-
stead distinguishing between response inhibition (which involves suppressing a pre-
potent response) and cognitive inhibition (which involves selective attention in the
presence of distractors). Exposure to adversity might shape these two types of inhibi-
tion in different ways. For example, acute stress might impair performance on tasks
of cognitive inhibition (of which the Flanker task is an example) and enhances perfor-
mance on tasks of response inhibition (for a meta-analysis, see Shields et al., 2016; but
see Dang, 2017). Future work could assess inhibition more broadly, e.g., by including
tasks that are hypothesized to require cognitive or response inhibition.

4.7 General conclusion

We found that people with more childhood adversity exposure perform worse in the
Flanker task not because of an impairment in their ability to inhibit distracting infor-
mation, but because of lower strength of perceptual input. Our results suggest that
people with more adversity exposure are not worse at inhibiting distractions; rather,
they do not seem to process information in the environment deeply unless it proves
to be a reliable and important source of information. These findings challenge domi-
nant interpretations, which infer an inhibition deficit from lowered performance. This
is an important difference not just for theory development, but also for future inter-
ventions aimed at closing performance gaps. For example, when applied to school con-
texts, interventions based on an inhibition interpretation would focus on the learning
environment, perhaps removing things from the classroom that could be distracting. In
contrast, an intervention based on an information processing interpretation might in-
stead focus on increasing the apparent relevance of the learning materials, perhaps by
providing more repetition or by making the content more ecologically relevant (Young
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et al,, 2022). Thus, cognitive modeling can offer crucial insights for our understanding
of cognitive abilities in adverse conditions.
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5.0 Abstract

Decades of research show that adversity tends to be associated with lower working
memory (WM) performance. This literature has mainly focused on impairments in the
capacity to hold information available in WM for further processing. However, recent
adaptation-based studies suggest that certain types of adversity can leave intact, or
even enhance, the ability to update information in WM. One challenge is that WM ca-
pacity and updating tasks tend to covary. Estimating the associations between adver-
sity and different processes in WM requires isolating variance in performance related
to WM capacity from variance in performance related to updating ability. In this Regis-
tered Report, participants from the Dutch Longitudinal Internet studies for the Social
Sciences (LISS) panel completed two tasks measuring WM capacity and one task mea-
suring both binding and updating of information. We measured participants’ exposure
to neighborhood threat, deprivation, and unpredictability. We estimated associations
between adversity and latent estimates of WM capacity and updating using structural
equation modeling. We did not find associations between adversity and WM capacity
or updating, nor did we find evidence that the associations were practically equivalent
to zero. Our results show that adversity researchers should account for overlap in WM
tasks when estimating specific WM abilities.
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5.1 Introduction

Living in adverse conditions, with prolonged exposure to intense stress, tends to have
a profound and enduring impact on cognitive functioning (Farah et al., 2006; Sheridan
et al,, 2022; Sheridan & McLaughlin, 2014). Although adversity can be described in
many ways, we follow contemporary models focusing on threat, deprivation, and un-
predictability as key dimensions of adversity (Ellis et al., 2009, 2022; McLaughlin et al.,
2021; McLaughlin & Sheridan, 2016). A domain that seems to be particularly affected
by adversity is working memory (WM). WM is a system for mentally building, main-
taining, and updating immediately relevant information (Oberauer et al., 2018). Per-
formance on WM tasks is associated with a host of social and cognitive abilities, such
as math (Peng & Fuchs, 2016), reading (Chiappe et al., 2000), learning (Cowan, 2014),
general intelligence (Conway et al,, 2003), and mentalizing (Mutter et al., 2006). Not
surprisingly, then, deficits in WM have negative consequences for both educational and
professional outcomes (Ahmed et al., 2018; Alloway & Alloway, 2010; Guo et al., 2020;
Spiegel et al,, 2021). Decades of research show that adversity is generally negatively
associated with performance on WM tasks (Goodman et al,, 2019). However, emerging
evidence suggests that specific aspects of WM might remain intact or even be enhanced
through developmental adaptations to adversity. So far, the literature has tended to fo-
cus on related, but different aspects of WM in isolation, limiting a fuller integration.
Here, we take a psychometric modeling approach to simultaneously examine potential
decreases and enhancements in two WM components: capacity and updating.

Deficit-based and adaptation-based models

A large literature has shown negative associations between exposures to adversity
and performance on WM tasks (Farah et al., 2006; Sheridan et al,, 2022; Sheridan &
McLaughlin, 2014). These associations may be potentially attributable to the enduring
influence of stress on several key brain regions that support WM (Duval et al., 2017;
Hanson et al., 2012). Much of this work has focused on WM capacity, or the ability to
keep multiple pieces of information simultaneously available for further processing.
For early-life adversity, this negative association is already present during childhood,
and persists into adulthood (Bos et al,, 2009; Evans & Schamberg, 2009; Farah et al.,
2006; Goodman et al., 2019; Hackman et al., 2010; Noble et al., 2007; but see Nweze
et al.,, 2021). Studies with college students have found a link between both recent and
lifetime experiences of stressful major life events (discrete negative events that have
a clear onset and offset, unlike chronic adversity) with lower WM capacity (Klein &
Boals, 2001; Shields et al,, 2017, 2019).

The most common tasks used to examine the negative association between adver-
sity and WM are simple span tasks (repeating a string of stimuli of increasing length),
complex span tasks (remembering a string of stimuli while being engaged by a sec-
ondary task), and n-back tasks (judging whether the current stimulus in a string is
identical to the stimulus n steps ago) (Goodman et al.,, 2019). Performance on these
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tasks is assessed through the number of items that participants can retain in WM, that
is, their overall capacity (with the exception of n-back; for concerns about the construct
validity of this task, see Frost et al., 2021; Kane et al., 2007).

Although both early-life and recent adversity appear to be negatively associated
with WM capacity, a small set of studies suggest that exposure to adversity may leave
intact, or even enhance, the ability to update items in WM in adolescents (Young et
al,, 2022) and adults (Young et al., 2018). Updating is defined as the ability to rapidly
replace old information in WM with new information. The finding that updating may
be left intact or even enhanced after exposure to adversity exemplifies emerging theo-
retical frameworks grounded in adaptive reasoning that are complementary to deficit
frameworks (Ellis et al.,, 2017, 2022; Frankenhuis, Young, et al., 2020; Frankenhuis &
Weerth, 2013).

Adaptation-based theories assume that developmental processes tailor an indi-
vidual’s cognitive abilities to the unique challenges and opportunities posed by their
environment. The link between adversity and cognitive abilities is further assumed to
be specific; as different types of adversity (e.g., threat vs. deprivation) pose different
challenges, they should (at least in part) shape cognitive abilities in different ways. For
example, with regards to executive functioning, some previous studies have found that
children and adults with more exposure to unpredictability (characterized by random
variation in adversity exposure over space or time) and threat tend to be better at
rapidly shifting their attention between tasks (Fields et al., 2021; Mittal et al,, 2015;
Steudte-Schmiedgen et al., 2014; Young et al., 2022; but see Nweze et al,, 2021). WM
updating may be especially adaptive in unpredictable environments. WM updating al-
lows people to maintain an up-to-date overview of the (changing) current state of the
environment (Young et al., 2018). Additionally, improved WM updating performance
has also been documented for threat exposure (Young et al,, 2022). An enhanced WM
updating ability could facilitate keeping track of and integrating signals that may po-
tentially signal acutely threatening situations.

Associations between WM capacity and updating

With deficit theories focusing on WM capacity and adaptation-based theories on WM
updating, we may wonder how capacity and updating are related to each other. Perfor-
mance on tasks measuring WM capacity and updating tend to be substantially corre-
lated (in the range of .20-.50; Frischkorn et al., 2022; Loffler et al., 2024). This overlap
appears to stem from shared demands of both types of tasks, in particular the need to
create and maintain arbitrary bindings (Gruszka & Necka, 2017; Oberauer, 2009; Wil-
helm et al,, 2013). The term binding refers to the process of mapping memory items to
specific positions in WM (e.g,, serial, spatial, or temporal positions, depending on the
task) (Oberauer, 2009; Oberauer & Lewandowsky, 2019). For example, on most WM
tasks, correct recall of memory items depends on remembering them in their correct
serial position, or in relation to the location where they were presented.
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The centrality of binding in WM is supported by theoretical models of WM and
by empirical work showing that (latent) WM capacity is strongly related to the abil-
ity to maintain bindings (Oberauer et al.,, 2000; Oberauer, 2005, 2009; Oberauer &
Lewandowsky, 2019; Wilhelm etal., 2013). The number of bindings a person can create
and maintain in WM might be the main limiting factor in WM capacity, as maintaining
several bindings at the same time will increasingly lead to interference between them
(Gruszka & Necka, 2017; Oberauer, 2009; Wilhelm et al., 2013). This upper limit on WM
capacity also affects performance on WM updating tasks. That is, updating items in WM
requires not just dissolving old bindings and creating new ones, but also maintaining
bindings of items that should not be updated. Thus, the overlap in performance on WM
updating and capacity tasks likely stems from the need in both types of tasks to create
and maintain bindings in WM (Ecker et al., 2010; Frischkorn et al,, 2022; Oberauer et
al,, 2000; Schmiedek et al., 2009; Wilhelm et al., 2013).

Nevertheless, WM updating tasks additionally require the updating of established
bindings, which sets them apart from WM capacity tasks (Ecker et al., 2010; Frischkorn
etal, 2022). Different updating tasks require different combinations of retrieval (mak-
ing information available for immediate processing), transformation (changing a prior
value into a new one, e.g., by addition or subtraction), and substitution (replacing a
prior value for a new value) (Ecker et al., 2010). Ecker et al. (2010) included three mea-
sures of WM capacity as well as eight versions of a WM updating measure that required
different combinations of retrieval, transformation, and substitution. After accounting
for overall updating accuracy (which was positively correlated with WM capacity), they
found positive correlations of around .50 between WM capacity with latent estimates
of retrieval and transformation accuracy, but not with a latent estimate of substitution
accuracy. Thus, when the ability to accurately substitute old with new information—
a key aspect of WM updating—is sufficiently isolated from WM capacity using latent
modeling, capacity and updating seem to be independent components of WM.

These findings underscore the importance of accounting for WM capacity when
assessing a person’s WM updating ability. This is especially important in the context of
adversity research, as previous studies suggest that certain types of adverse conditions
might have opposing effects on WM capacity and updating (e.g., Goodman et al,, 2019;
Youngetal,, 2018, 2022). Yet, to our knowledge, no previous research has analyzed both
abilities within a single statistical model. This could lead to (1) an underestimation of
the extent to which adversity undermines WM capacity, and (2) underestimation of the
extent to which adversity can enhance WM updating. This, in turn, has implications for
basic and applied science. For basic science, it could bias inferences about individual
differences in performance on WM tasks, especially when the negative association be-
tween adversity and WM capacity is stronger than the positive association with WM
updating. For applied science, it could hide from view potential pathways to leverage
people’s existing strengths in school or work contexts.
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Current study

In this study, we estimated associations between latent estimates of WM capacity and
updating with three types of adversity: threat, deprivation, and unpredictability. To-
gether, these adversity types capture key dimensions in contemporary models of ad-
versity (Ellis etal,, 2009, 2022; McLaughlin et al., 2021; McLaughlin & Sheridan, 2016).
Threat refers to experiences involving the potential for harm imposed by others. We
focused on perceived neighborhood violence, the extent to which an individual reports
having been exposed to acts of violence in their neighborhood. Deprivation refers to
having a low level of resources. We focused on perceived material deprivation, a (per-
ceived) lack of access to material resources. Unpredictability refers to variation in ma-
terial deprivation over time. This definition is inspired by, but deviates from the harsh-
ness-unpredictability framework, in which unpredictability is defined as stochastic
variation in harshness (age-specific rates in morbidity and mortality) over space and
time (Ellis et al., 2009, 2022). We did not calculate unpredictability in neighborhood
threat given that participants had at most six timepoints, and often as few as one or
two, which is insufficient to calculate variation over time (Walasek et al., 2024).

We addressed three research questions. First, what is the association between ad-
versity and WM capacity? Second, what is the association between adversity and WM
updating after accounting for WM capacity? Third, are the directions and strengths of
these associations similar or different for neighborhood threat, material deprivation,
and unpredictability?

We evaluated evidence for deficit- and adaptation-based frameworks (see Figure
5.1A for a visual summary). Crucially, as deficit and adaptation processes can operate
in concert (Frankenhuis, Young, et al., 2020), we could find support (or lack thereof)
for both frameworks in the same model. We distinguished between three between-
person data patterns: (1) lower performance, (2) higher performance, and (3) practi-
cally equivalent performance. We defined lower performance as a statistically signif-
icant negative association between a type of adversity and WM capacity or updating
(irrespective of effect size). We defined higher performance as a statistically significant
positive association between a type of adversity and WM capacity or updating (irre-
spective of effect size). We defined practically equivalent performance as an association
between a type of adversity and WM capacity or updating that has a standardized effect
smaller than 0.1 and larger than -0.1—even if the effect is statistically different from
zero—which we tested using Two One-Sided T-Tests (TOST) equivalence testing (see
the ‘Primary analyses’ section; Lakens et al., 2018).

Deficit frameworks predict a negative association between all three types of ad-
versity and WM capacity as well as WM updating. This follows from the hypothesis that
adversity leads to broad WM deficits (Farah et al., 2006; Sheridan et al., 2020). Deficit
frameworks are partially supported if we find negative associations with only one (or
two) types of adversity.
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Within adaptation-based frameworks, theories make two predictions. First, if
adaptive processes enhance WM updating and there are no impairment processes op-
erating, we can expect a positive association between adversity and WM updating.
Second, if, adaptive processes operate in concert with general impairment processes,
we can expect practically equivalent WM updating performance in combination with
lower WM capacity. If neither impairment nor adaptative processes are operating, we
can expect both WM updating and capacity to be practically equivalent.

We also had two expectations based on prior studies. First, we expected the asso-
ciation between material deprivation and WM capacity to be more negative than the
associations with unpredictability and neighborhood threat. This follows from findings
showing that cognitive abilities are more negatively associated with cognitive depri-
vation than threat (Salhi et al., 2021; Sheridan et al,, 2020). Although cognitive and
material deprivation are distinct types of deprivation, they tend to be correlated, and
are both associated with limited access to resources that stimulate cognitive develop-
ment and functioning (Bradley etal.,, 2001; Lurie etal., 2024; Rosen et al., 2019). There-
fore, we expected that their associations with WM would have comparable effect sizes.
Second, researchers have hypothesized that WM updating is particularly adaptive in
unpredictable and threatening environments, as it facilitates keeping track of unpre-
dictable changes and sudden threats. Therefore, we expected WM updating to be asso-
ciated with unpredictability and neighborhood threat, but not with material depriva-
tion (Young et al,, 2018; but see Young et al.,, 2022).

5.2 Methods

Participants

Our study included 800 participant who were randomly sampled from the Longitu-
dinal Internet studies for the Social Sciences (LISS) panel (Scherpenzeel, 2011). The
LISS panel is a representative probability sample of roughly 5,000 Dutch households
(~7,500 individuals) drawn from the population register by Statistics Netherlands on
an invite-only basis. Households without a computer or internet connection are pro-
vided with these facilities by LISS. Each year, participants complete the same core
battery of questionnaires about—among other topics—their financial situation in the
pastyear. In addition, participants can complete additional online questionnaires every
month, with variable content. The current study integrated two data sources. First, our
sample of 800 participants participated in a new LISS study between October 2023 and
February 2024 (hereafter referred to as ‘newly collected data’), in which we included a
measure of neighborhood threat and multiple measures of working memory. Second,
we accessed data that were previously collected in LISS (hereafter referred to as ‘the
LISS archive’). See Figure 5.2 for a visual overview of the data sources and their mea-
surement timepoints. We signed a contract with LISS stipulating that we would receive
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Figure 5.1. Overview of predictions derived from deficit and adaptation frameworks. Panel A de-
picts the most likely between-person data patterns based on previous literature, and whether we would
consider them consistent with deficit and adaptation frameworks (see the main text for more details).
Panel B depicts an overview of the preregistered Structural Equation Model. Note that this model differs
slightly from the final model (see Figure 5.4). Ellipses represent latent variables, rectangles represent
manifest variables, and circles represent residual variances. Unidirectional solid lines represent factor
loadings, bidirectional solid lines represent covariances, and dashed lines represent regression paths.
All four manifest WM measures loaded on a latent WM capacity factor, reflecting the fact that people have
to hold information active in WM on all tasks. We fixed the loading of WM capacity on the Binding Task
to 1, reflecting the idea that the ability to create and maintain bindings is the main limiting factor in WM
capacity (Gruszka & Necka, 2017; Oberauer, 2009; Wilhelm et al,, 2013). WM updating was modeled as a
latent factor capturing the residual variance in the updating task after accounting for variance related to
WM capacity. INR = income-to-needs ratio; Perc. Scarcity = perceived scarcity; SD = standard deviation.

access to the newly collected data only after Stage 1 acceptance of this Registered Re-
port.

We based our power analysis on simulations reported by Kretzschmar & Gignac
(2019), determining the required sample size to detect a small effect size (8 = 0.1) with
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Figure 5.2. Overview of the different data sources used in this study. We distinguished between
measures taken from the LISS data archive and measures that were newly collected in our own study be-
tween October 2023 and February 2024. Perceived scarcity and income were collected yearly in the full
panel from 2008 - 2023. Neighborhood crime and crime victimization were collected across six waves
between 2008 and 2018. In the newly collected data, we collected data on a measure of neighborhood
threat and multiple measures of working memory. Note that participants did not have data across all
timepoints of the archived studies because they joined the LISS panel more recently or because they did
not participate in each wave.

atleast 90% power at a = 0.05. Assuming a reliability of at least 0.7 (which is typical for
WM tasks with a number of trials similar to ours; e.g., Wilhelm et al., 2013), we required
a sample size of N = 730. Anticipating some exclusions, we decided to include 800 par-
ticipants. Participants were eligible for inclusion if they 1) were currently between 18
and 55 years old, 2) had completed at least one wave of an archived longitudinal LISS
study containing measures that we use to operationalize crime neighborhood threat
(see below), and 3) had given permission to link their LISS data to government micro-
data (not relevant here).

To ensure sufficient representation of people from lower socioeconomic back-
grounds, half the total sample was sampled from participants who reported one or
more of the following at least once in the three years: (1) a monthly income < €1,500,
(2) HAVO or VWO as highest completed education (which are the two highest levels in
Dutch secondary education), or (3) a score of 4 or lower on the ‘ladder of life’ (“If you
imagine a ‘ladder of life’, where the first step represents the worst possible life, and the
tenth (top) step the best possible life, on what step would you place yourself?”). Par-
ticipants were excluded if they (1) switched to and interacted with other browser tabs
during one or more of the cognitive tasks, (2) did not perform above chance level on the
secondary processing tasks. The final sample consisted of 759 participants (Table 5.1).
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Table 5.1. Descriptive statistics.

Category Statistic
Mean age (SD) 41 (9.9)
Sex (% Female) 54.4
Highest completed education (%)
primary school 0.5
vmbo (intermediate secondary education) 8.3
havo/vwo (higher secondary education) 9.2
mbo (intermediate vocational education) 26.4
hbo (higher vocational education) 315
wo (university) 22.4
other 0.5
missing 1.2

Mean number of waves (SD)

INR 13.4 (3.9)
Perceived scarcity 11.1(3.7)
Threat 3.5(1.9)

Measures

All independent variables, except for the income-to-needs ratio (INR) consisted of mul-
tiple items and/or scales. If all correlations between the items/scales were equal to or
larger than .60 (i.e. indicating a “strong” correlation), then we computed a uniformly
weighted average. If the correlation was lower than .60, we applied Principal Compo-
nent Analysis (PCA) to the averaged measures and extracted only the first principal
component score. We present bivariate correlations in Table 5.2, and histograms for all
independent measures in the supplemental materials.

Neighborhood threat

Perceived neighborhood crime. We included four items from the LISS archive col-
lected across six waves (https://doi.org/10.17026/dans-zch-j8xt), in which partici-
pants answered how often it happens that they 1) “avoid certain areas in your place
of residence because you perceive them as unsafe”, 2) “do not respond to a call at the
door because you feel that it is unsafe”, 3) “leave valuable items at home to avoid theft
or robbery in the street?”, 4) “make a detour, by car or on foot, to avoid unsafe areas?”
on a scale of 1 (“(Almost) never”), 2 (“Sometimes”), or 3 (“Often”). We recoded these
items so that 0 indicated “(Almost) never”. We then summed the responses within each
wave for which participants had data, and calculated an average across the waves.
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In addition, we implemented the Neighborhood Violence Scale (Frankenhuis,
Young, etal., 2020; Frankenhuis & Bijlstra, 2018) in the newly collected data. The Neigh-
borhood Violence Scale includes seven items measuring perceived exposure to neigh-
borhood violence (e.g., “Crime is common in the neighborhood where I live”; “Where I
live, it is important to be able to defend yourself against physical harm”). Participants
answered these questions on a scale of 1 (“Completely disagree”) to 7 (“Completely
agree”). We computed an average of the seven items.

Crime victimization. We used data from the LISS archive collected across six
waves (same dataset as above), in which participants indicated whether they fell vic-
tim to eight types of crime over the two years prior to a particular wave (0 =no, 1 =
yes). We included seven items concerning exposure to crime: (1) burglary or attempted
burglary; (2) theft from their car; (3) theft of their wallet or purse, handbag, or other
personal possession; (4) wreckage of their car or other private property; (5) intimida-
tion by any other means; (6) maltreatment of such serious nature that it required med-
ical attention; (7) maltreatment that did not require medical attention. We computed
a variety score by summing the exposures to unique types of crime across all waves.
Thus, if a participants reported exposure to the same type of crime on separate waves,
this counted as one exposure in the total score (Sweeten, 2012).

Neighborhood threat composite. We first computed an average across time for
each measure separately (i.e., the two measures of neighborhood crime and the mea-
sure of crime victimization). Because correlations were below .60 (see Table 5.2), we
then used PCA to extract only the first principal component score (R? =.20). The threat
component was most strongly determined by the Neighborhood Violence Scale (0.63),
followed by the perceived neighborhood crime scale from the LISS archive (0.40) and
crime victimization (0.18).

Material deprivation
We measured material deprivation with two separate indicators: perceived scarcity
and the income-to-needs ratio.

Perceived scarcity (mean). We used a few items from the LISS archive that were
collected on a yearly basis between 2008 and 2023 (https://doi.org/10.57990/1gr4-
bf42) to index perceived scarcity. First, participants indicated how hard or easy it cur-
rently is to live off the income of their household, on a scale from 0 (very hard) to 10
(very easy). Second, participants were asked to choose which of the following best ap-
plied to their current situation: (1) “we are accumulating debt”; (2) “we are somewhat
eating into savings”; (3) “we are just managing to make ends meet”; (4) “we have a little
bit of money to spare”; (5) “we have a lot of money to spare”. Responses were reverse-
coded, so that higher scores indicated a worse financial situation. Third, participants
answered which of the following issues they were confronted with at present (0 =no, 1
=yes): (1) “having trouble making ends meet”; (2) unable to quickly replace things that
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break”; (3) “having to lend money for necessary expenditures”; (4) “running behind in
paying rent/mortgage or general utilities”; (5) “debt collector/bailiff at the door in the
last month”; (6) “received financial support from family or friends in the last month”.

We first computed the average across time for each item separately. Because cor-
relations were all above .60, we calculated a uniformly weighted average.

Income-to-needs (mean). We calculated an income-to-needs ratio for each year
using monthly self-reported net household income from the LISS archive (https://doi.
org/10.57990/qn3k-as78). Zero values in household income were set to missing, as
these could either indicate the lack of an income or an unwillingness to disclose the in-
come. If monthly household income is missing (or zero) for an entire year for a partic-
ipant, we used, if available, the yearly net household income they reported in the LISS
archive (https://doi.org/10.57990/1gr4-bf42), dividing it by 12 to obtain a monthly
estimate. First, we divided the average income per year by the poverty threshold, as
determined by Statistics Netherlands (Van den Brakel et al., 2023; CBS, personal com-
munication, December 15, 2023). As thresholds are only provided for households with
up to three children, we applied the threshold of a household with three children to
households with more than three children. Likewise, we applied the threshold of a
household with two adults for households that contained three or more adults. Second,
we calculated the average within-person income-to-needs ratio for each year by aver-
aging across the monthly income-to-needs estimates.

Unpredictability

Perceived scarcity (SD/mean). This measure was based on the same items as out-
lined above (see Perceived scarcity (mean)). We computed unpredictability over time
in perceived scarcity using the coefficient of variation, which is the within-person stan-
dard deviation across years divided by the mean (Key et al., 2017; Liu et al,, 2022;
Ugarte & Hastings, 2023; Walasek et al., 2024; Young et al., 2020). The mean and stan-
dard deviation in income have been found to be strongly positively correlated, indicat-
ing that people with lower incomes tend to experience less variability in income (Li et
al,, 2018; Young et al., 2024). For that reason, the standard deviation alone has been
called into question as a measure of adversity, as the same fluctuation in income can
have a greater relative impact for people close to the poverty line than for people with
high incomes.

We first computed the coefficient of variation across time for each item separately.
because correlations were below .60 (see Table 5.2), we then used PCA to extract only
the first principal component score (R? = .38). The perceived unpredictability compo-
nent was almost fully determined by the item about people’s current situation (1.00),
followed by difficulties to live off income (0.34) and financial troubles (0.20).
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Income-to-needs (SD/mean). Similar to perceived scarcity, we computed unpre-
dictability over time in the income-to-needs ratio using the coefficient of variation.
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WM tasks

The WM tasks were all part of the newly collected data. All materials and scripts
for the cognitive tasks can be found at https://stefanvermeent.github.io/liss_wm_
profiles_2023/materials/README.html. Prior to collecting LISS data, we conducted a
pilot study among in a Dutch sample (N = 100) through Prolific Academic. The main
goals of this pilot study were to collect participant feedback (e.g., difficulty of instruc-
tions, whether we included sufficient breaks) and to analyze performance and corre-
lations between tasks. The results of this pilot study are described in more detail
in the Supplemental Materials (https://stefanvermeent.github.io/liss_wm_profiles_
2023 /supplement/README.html).

Operation Span Task. The Operation Span Task (Figure 5.3A) is a common mea-
sure of WM capacity (Conway et al., 2005; Wilhelm et al,, 2013). In this task, partici-
pants alternate between a primary memorization task and a secondary processing task.
On each trial, the task is to memorize a sequence of letters in the correct order (from a
set of 12 letters). Each letter is presented for 1,000 ms in the center of the screen. Next,
participants see a simple mathematical equation including the outcome. Their task is
to indicate whether the outcome is correct or incorrect by pressing either the ‘a’ or ‘I’
key on their keyboard. The equations always contain one addition or subtraction, with
numbers ranging between one and 10. Outcomes are always positive integers. On each
trial, participants have to memorize between four and six letters, with each set size re-
peated three times. At the end of each sequence, all letters are presented in a 3x4 grid,
and participants click the letters in the correct order.

Participants first practiced the letter task (three times), then the math task (eight
times), and then the full task (three times). If they performed at or below chance, they
had the opportunity to either repeat a part or advance to the next part. After practicing,
participants completed 9 test trials, with a total of 45 recall items and 45 math items.
We computed an operation span score by calculating the proportion of letters recalled
in the correct sequential position across trials (Conway et al., 2005).

Rotation Span Task. The Rotation Span Task (Figure 5.3B) is similar to the Oper-
ation Span Task and was adopted from Wilhelm et al. (2013). On each trial, the task is
to memorize the orientation of a sequence of arrows in the correct order. Arrows can
take on eight different orientations, with increments of 45.. Each arrow is presented
for 1,000 ms in the center of the screen. Next, participants see a capital ‘G’ or ‘F’ that
is rotated at one of eight different orientations, with increments of 45¢. Their task is to
indicate whether the letter is mirrored or not. On each trial, participants have to mem-
orize between two to five arrows, with each set size repeated three times. At the end
of each sequence, all arrows are presented simultaneously, and participants click the
arrows in the correct order.
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Participants first practiced the arrow task (three times), then the letter task (eight
times), and then the full task (three times). If they performed at or below chance, they
had the opportunity to either repeat a part or to advance to the next part. After prac-
ticing, participants completed 12 test trials, with a total of 45 recall items and 45 letter
items. We computed a rotation span score by calculating the proportion of arrows re-
called in the correct sequential position across trials (Conway et al., 2005).

Binding-Updating Task. The Binding-Updating task (Figure 5.3C) was adopted
from Wilhelm et al. (2013). On each trial, participants see a 3x3 grid, with a fixation
cross in the central cell. After 1,000 ms, they are presented with a sequence of num-
bers (0-9) in random locations of the grid. Each new number is presented for 1,500
ms, after which it disappears for 500 ms before the next number is presented. The task
is to remember the last number they see in each location. Memory set sizes (i.e., the
number of unique locations in the grid) ranges between three and five. On half of the
trials, only one number is presented in each location. These constitute the binding tri-
als. On the other half of the trials, some letters are presented in the same location as
previous numbers, requiring mentally replacing the old number with the new number.
These constitute the updating trials. We use two, three, and four updating steps, each
repeated in combination with the different set sizes. At the end of the trials, partici-
pants indicate which letter they saw last in each location in random order.

Participants first completed four practice trials. If they performed at or below
chance, they had the opportunity to either repeat the practice trials or to advance to the
actual task. After practicing, they completed 18 test trials, of which nine were binding-
only (24 recall items in total) and nine were updating trials (24 recall items in total).
We computed a binding score by calculating the overall recall accuracy (%) across tri-
als with zero updating steps. We computed an updating score by calculating the overall
recall accuracy (%) across trials with one or more updating steps.

Procedure

We received ethical approval from the Ethics Review Board of the Faculty of Social &
Behavioral Sciences of Utrecht University (FETC20-490). Upon starting the study, par-
ticipants were informed that the study could only be completed on a laptop or desktop
PC. If they attempted to start the study on a tablet or smartphone, they were unable to
advance and prompted to switch to a suitable device. Participants started with the WM
tasks, which on average took between 20 and 25 minutes. The WM tasks were com-
pleted in fullscreen mode. If participants left fullscreen mode at any moment during
the tasks, they saw instructions at the top of their screen that allowed them to return
to fullscreen mode. The order of the WM tasks was counterbalanced, and participants
had the opportunity to take breaks at regular intervals.

After the cognitive tasks, participants answered three questions about the envi-
ronment in which they completed the WM tasks: 1) “How much noise was there in your

132



Inconclusive evidence for associations between adverse experiences and working memory performance

A Memorize Correct? Memorize Correct? Recall

K 5-3=2 N 4+7=9 ?

1,000 ms Untif response 1,000 ms Until response  Until response
B Memorize Mirrored? Memorize Mirrored? Recall
T ) \ r ?
1,000 ms Untif response 1,000 ms Until response  Untif response
C Bind Bind Bind Update Recall
3 1 ?
+ + + + +
1,500 ms 1,500 ms 1,500 ms 1,500 ms Until response

Figure 5.3. Overview of the working memory tasks. Panel A: Operation Span Task. Participants
memorized letters in the correct order, while engaging in a secondary math task. Panel B: Rotation Span
Task. Participants memorized the orientation of arrows, while judging whether letters were mirrored
or normal in a secondary task. Panel C: Participants memorized numbers in the correctlocation in a 3x3
grid. On half of the trials, all numbers were presented in unique locations, only requiring binding the
numbers to the correct position. On the other half, some numbers were presented in the same location
as a previously presented number, requiring updating. Note: stimuli are not to scale.

environment during the memory tasks?”; 2) “Were you at any moment interrupted dur-
ing the memory tasks?”; 3) “Did you at any moment during the memory tasks leave the
computer?”. Next, they completed questionnaires about their future orientation (not
considered here), personality (not considered here), past adversity exposure, and re-
cent adversity exposure. Finally, they completed a standard set of evaluation questions
asking about their experiences with the study, with the possibility to provide open-
ended feedback. This part on average took 5 minutes. Participants received €7.50 for
their participation through LISS. If participants experienced difficulties of any sort,
they could contact the LISS helpdesk.

Proposed analysis plan
The Stage 1 protocol of this Registered Report can be found at https://osf.io/dp7wc.
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Data access

The working memory data and one of the neighborhood threat indices were collected
between October 2023 and February 2024, prior to submitting the Stage 1 protocol.
These data were only made available to the first author after Stage 1 acceptance, as
stipulated in a signed contract with LISS. During planning of the study, the first author
accessed the LISS data archive and inspected three waves of the LISS data containing
the items about neighborhood safety and crime exposure, as well as the three most re-
cent monthly data collections containing basic demographic info. The purpose was to
ascertain the number of individuals who had finished the previous waves in the LISS
data archive and were presently still participating in the panel (i.e., to see if we could
reasonably create a link between the LISS data archive and newly collected data).

All data access events were automatically detected and logged on the GitHub
repository using the projectlog R package (Vermeent, 2023). We took the following
measures to prevent bias: 1) we randomly shuffled the participant IDs in each data set
using the projectlog R package, so that we were unable to link participant data between
(waves of) studies in the LISS data archive; 2) we did not inspect any of the measures
that will be part of our adversity composites; 3) we did not know which participants
would be selected for the newly collected data; 4) the primary analyses will be based
on composite measures that combine measures from the LISS data archive with mea-
sures from the newly collected data.

Primary analyses

See Figure 5.1B for an overview of the model specification. We fitted a single model con-
taining all adversity measures using the lavaan R package (Rosseel, 2012). We used ro-
bust maximum likelihood estimation to account for non-normality. Missing data were
handled using full information maximum likelihood (FIML). We accounted for cluster-
ing within families using the lavaan.survey R package (Oberski, 2014).

WM capacity was estimated as a latent factor loading on all outcome measures. In
addition, we estimated WM updating as a latent factor capturing residual variance in
the updating measure. Thus, this factor accounted for updating-specific variance after
accounting for WM capacity. We estimated the effect of each adversity type (dashed
lines in Figure 5.1B) through regression analyses. Each association was controlled for:
(1) age in years ; (2) the quadratic effect of age; (2) environmental noise (“How noisy
was your environment during the memory tasks”, rated on a scale of 1 (very little noise)
to 5 (a lot of noise)); (3) two items measuring interruptions (“Where you at any mo-
ment interrupted during the memory tasks?” and “Did you at any moment during the
memory tasks leave your computer?”, rated as yes or no). Goodness of fit was assessed
using the comparative fit index (CFI) and the root mean square error of approxima-
tion (RMSEA). CFI values > .90 and RMSEA values < .08 were interpreted as acceptable
model fit, and CFI values > .95 and RMSEA values <.06 as good model fit (Hu & Bentler,
1999).
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We anticipated that we may have to optimize the model further in case of bad
model fit, and therefore planned to estimated the model in two steps to prevent bias.
First, we constructed the measurement model of WM, without including the adversity
measures. This step was planned to be carried out prior to accessing any of the adver-
sity measures. Once we obtained at least acceptable model fit, we accessed and added
the adversity measures to the model. This procedure was tracked and timestamped on
the GitHub repository using the procedure outlined above. We controlled for multiple
testing across adversity measures, but separately for each outcome measure, using the
false discovery rate (Benjamini & Hochberg, 1995; Cribbie, 2007).

To statistically test whether small effects were practically equivalent to zero we
used Two One-Sided T-tests (TOST) equivalence testing (Lakens et al., 2018), using -0.1
and 0.1 as equivalence bounds. TOST equivalence testing allows us to conclude prac-
tically equivalent performance based on a significant effect, rather than erroneously
interpreting a non-significant effect as evidence for the absence of an effect. We con-
sidered any effect that fell within this region to reflect practical equivalence, that is, a
between-person difference in performance that is practically equivalent to zero. TOST
provides two p-values, one testing against the upper bound and one testing against the
lower bound; we report only the largest of the two p-values.

5.3 Results

Confirmatory analyses

Model fit

The preregistered measurement model specification did not converge. A model version
excluding the covariance between manifest binding and updating did converge, but re-
sulted in suboptimal fit (Robust CFI = 0.95, robust RMSEA = 0.12,95% CI =[0.09, 0.14]).
Modification indices indicated that model fit would improve most from estimating the
covariance between Rotation Span and Operation Span, which is in line with previous
factor models of working memory containing span tasks as a subset of other working
memory tasks (e.g., Loffler et al., 2024). A model incorporating an estimate of this co-
variance provided a good fit to the data (Robust CFI = 1, robust RMSEA = 0,95% CI = [0,
0]). After finalizing the measurement model, we constructed the final structural model
by adding all predictors and covariates to the model, which resulted in a good model
fit (Robust CFI = 0.99, robust RMSEA = 0.03, 95% CI = [0, 0.03]). Figure 5.4 presents a
visual overview of the final model.

Associations between adversity and WM

The main results of the associations between the adversity measures and WM are sum-
marized in Figure 5.5. None of the adversity measures were significantly associated
with WM capacity after adjusting for multiple testing (all ps = .063). We also did not
find evidence for practical equivalence for associations between any of the adversity
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Ospan Task Rspan Task Binding Task Updatig Task
% correct % correct % correct % correct

5o

Figure 5.4. Overview of the final measurement model of WM performance. Ellipses represent la-
tent variables, rectangles represent manifest variables, and circles represent unstandardized residual
variances. Unidirectional lines represent standardized factor loadings and bidirectional lines represent
covariances. All four manifest WM measures loaded on a latent WM capacity factor, reflecting the fact
that people have to hold information active in WM on all tasks. We fixed the loading of WM capacity on
the Binding Task to 1, reflecting the idea that the ability to create and maintain bindings is the main lim-
iting factor in WM capacity (Gruszka & Necka, 2017; Oberauer, 2009; Wilhelm et al., 2013). WM updating
was modeled as a latent factor capturing the residual variance in the updating task after accounting for
variance related to WM capacity. WM = working memory; Ospan = Operation Span; Rspan = Rotation
Span.

measures and WM capacity (all ps = .055). Similarly, none of the adversity measures
were significantly associated with WM updating after adjusting for multiple testing (all
ps = .370). We also did not find evidence for practical equivalence to zero for associa-
tions between any of the adversity measures and WM updating (all ps =.109).

Posthoc non-preregistered analyses

We conducted three posthoc non-preregistered analyses, described in more detail in
the supplemental materials. First, to contextualize our findings based on latent WM
estimates, we estimated associations between adversity and performance on the sep-
arate WM tasks using four linear regressions. Threat had small, significant negative as-
sociations with performance on the Rotation Span Task (8 =-0.13, p =.002), Operation
Span Task (8 =-0.14, p =.002), and Binding Task (8 =-0.12, p =.004). None of the types
of adversity were significantly associated with performance on the Updating Task (all
ps >.181), and only the association with unpredictability in the income-to-needs was
practically equivalent to zero (p =.041).

Second, the inconclusive nature of our confirmatory results could indicate that
the true effect sizes were smaller than the effect size of interest that we used for our
power analysis (8 = 0.1; i.e, that we lacked sufficient power). To explore this, we con-
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WM capacity WM updating

0.21

0.11 [

Standardized regression coefficient

Percelved Perceived
@ INR (M) scarcity (M -.- INR (CV) @ scaraity (CV -.- Threat

Figure 5.5. Results of the structural part of the SEM model testing the association between threat,
deprivation, and unpredictability on latent estimates of WM capacity and WM updating. The gray area
shows the area of practical equivalence. Solid points indicate effects outside the area of practical equiv-
alence, which was true for all effects. Standard errors represent the 95% confidence intervals. CV = co-
efficient of variation; INR = income-to-needs ratio; M = mean; WM = working memory.

ducted an alternative test for the absence of an association between adversity and WM
by constraining regression paths between adversity and WM factors to zero in the SEM.
Constraining all paths to latent WM capacity to zero significantly reduced model fit,
although the change in AIC was below the cut-off as proposed by Burnham & Anderson
(2002), A AIC=7.62, A x(5) =14.20, p =.014, Robust CFI = 0.99, robust RMSEA = 0.03,
95% CI=[0.01, 0.04]. Constraining all paths to latent WM updating did not significantly
reduce model fit, A AIC = 3.81, A x(5) = 5.85, p =.321, Robust CFI = 0.99, robust RM-
SEA = 0.03, 95% CI = [0, 0.03]. Thus, these results were somewhat inconsistent with
the preregistered frequentist equivalent tests.

Third, as a non-preregistered robustness check, we calculated Bayes factors for the
preregistered equivalence tests using the bain package (Hoijtink et al., 2019), in which
we evaluated whether the observed data are more likely under the hypothesis that the
effects fall within the equivalence bounds, relative to the hypothesis that the effects fall
outside of the equivalence bounds. The results are summarized in Table A4.3. For all but
one association, the model comparisons showed at least strong evidence in favor of the
data being more likely under the hypothesis that the effects fell within the equivalence
bounds (BF;, ranging between 16.9 and 158.9. The only exception was the association
between threat and WM capacity, for which we found moderate evidence in favor of
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the data being more likely under the hypothesis that the effect fell within the equiva-
lence bounds (BF;, = 5.5. Thus, these results were inconsistent with the preregistered
frequentist equivalent tests, which did not find evidence for practical equivalence.

Deviation from the Stage | protocol

In the Stage 1 protocol, we planned to first access the dependent variables to construct
the SEM, and then access the independent variables. Due to an unintended error, the
first author already accessed the datasets containing the measures that would be used
to compute the independent variables before finalizing the SEM. However, beyond
reading them into the R environment, these data were not yet inspected, manipulated,
or summarized. We contacted the PCI recommender upon finding out about this devi-
ation, and agreed to describe this deviation as done here. For the sake of transparency,
we timestamped the scripts for processing the independent variables at the moment of
this unintended data access (https://github.com/StefanVermeent/liss_wm_profiles_
2023 /blob/d143e55/scripts/2_pipeline/1_ivs.R). They contain the code to read in the
data, but no code yet for any type of data cleaning or variable computation.

5.4 Discussion

We investigated associations between adversity (threat, material deprivation, and un-
predictability) and WM capacity, a person’s ability to hold information available for
later processing, as well as WM updating, a person’s ability to mentally replace old with
new information. We distinguished between WM capacity and updating on a latent
level using four different tasks, three of which are primarily construed as WM capacity
tasks, and one that is primarily construed as a WM updating task. The WM capacity fac-
tor loaded on performance of all four tasks, in line with previous findings (Frischkorn
et al,, 2022; Gruszka & Necka, 2017; Oberauer, 2009; Wilhelm et al., 2013). An addi-
tional WM updating factor accounted for the portion of variance in the Updating Task
that was not explained by WM capacity. We did not find any consistent associations be-
tween adversity and WM capacity nor updating in our preregistered analyses. On the
one hand, none of the associations significantly differed from zero. On the other hand,
none of the associations fell within the pre-specified region of practical equivalence to
zero (i.e., a between-person difference in performance that is practically equivalent to
Zero).

The confirmatory results were not consistent with hypotheses generated from a
deficit framework. A large literature has documented negative associations between
exposure to early-life adversity—especially deprivation—and WM capacity, which per-
sists into adulthood (Farah et al.,, 2006; Goodman et al., 2019; Sheridan et al., 2022;
Sheridan & McLaughlin, 2014; Young et al., 2018; but see Nweze et al., 2021). Similarly,
studies with young adults have found that a higher frequency of recent as well as life-
time stressful major life events (i.e., negative events with a clear onset and offset, unlike
chronic adversity) is also negatively associated with WM capacity (Klein & Boals, 2001;
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Shields et al,, 2017, 2019). The results were also not consistent with hypotheses gen-
erated from adaptation frameworks. Recently, a small set of studies documented intact
and even higher WM updating performance in adolescents and adults who reported
more exposure to childhood adversity (Young et al., 2018, 2022). These associations
have been interpreted as reflecting developmental adaptations to adversity: in more
threatening and unpredictable environments, it may be beneficial to be able to rapidly
update the items held in WM (Ellis et al., 2017, 2022; Frankenhuis, Young, et al., 2020;
Frankenhuis & Weerth, 2013). In contrast, we did not find consistent associations be-
tween adversity exposure and WM updating. These findings are inconclusive, as we
also did not find evidence for practical equivalence in our preregistered analysis.

A set of non-preregistered robustness checks were comparatively more consistent
with practically equivalent performance, although they did not fully rule out the exis-
tence of small associations between adversity exposure and working memory perfor-
mance. First, A Bayesian reanalysis of the preregistered equivalence tests (using the
same equivalence bounds) provided strong evidence in favor of the hypothesis that
working memory performance was practically equivalent, in contrast to the preregis-
tered analyses. Second, constraining the regression paths in the SEM to zero somewhat
reduced model fit for WM capacity, but not for WM updating. This suggests that there
may have been systematic associations with WM capacity that were smaller than the
equivalence bounds used in the (Bayesian) equivalence tests. If true, the associations
would be smaller than we expected based on the literature outlined above, and would
require a larger sample size to reliably detect. These analyses were not part of the reg-
istered analysis protocol, and therefore should be interpreted with sufficient caution
pending replication.

The Updating Task shared a large proportion of variance with the WM capacity
measures, which aligns with prior psychometric work focused on the structure of WM
(Lewandowsky & Farrell, 2010; Oberauer et al., 2000; Wilhelm et al., 2013). This high-
lights an important methodological issue for the field of adversity research, especially
researchers working from adaptation frameworks, who hypothesize distinct effects of
adversity on different components of WM (in contrast to deficit-oriented researchers,
who expect adversity to have a negative effect on all components of WM). Specifically,
adaptation-oriented researchers have hypothesized that certain types of adversity may
enhance WM updating through developmental adaptation, while impairing WM capac-
ity (Ellis et al,, 2022; Young et al,, 2018, 2022). So far, this hypothesis has—to our
knowledge—only been tested based on raw performance on single WM updating tasks.
However, if true, performance on single WM updating tasks may substantially underes-
timate positive associations between adversity and WM updating, as raw performance
may be influenced by both deficit and adaptation processes (the former influencing
WM capacity, inadvertently measured in WM updating tasks). Leveraging these psycho-
metric insights will be pivotal to better understanding associations between adversity
and WM for future studies.
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Aside from psychometric considerations, a second potential reason for the dis-
crepancy between our findings and those from previous studies is that our investiga-
tion focused on adverse experiences in adulthood. In contrast, most previous studies
have focused on the effects of either childhood adversity or stressful life events. It
is possible that, relative to childhood adversity, the association between adversity in
adulthood and WM varies as a function of other factors. For example, the association
between adversity in adulthood and WM might be stronger for people who also expe-
rienced adversity during childhood, either due to early developmental calibration to
chronic stress and/or due to greater lifetime exposure to stress (Hostinar & Gunnar,
2013; Shields et al., 2017).

Strengths, limitations, and future directions

This study had several strengths. First, the sample was drawn from the Dutch LISS
panel, which provides a large, representative sample of the Dutch population. Second,
we drew on the longitudinal nature of the LISS panel to estimate three key dimensions
of adversity exposure (threat, deprivation, and unpredictability), using several indica-
tors for each. Third, we included four WM tasks, and used SEM to separate variance
related to WM capacity from variance related to WM updating. This allowed us to more
precisely estimate capacity and updating as two key components of WM.

This study also had limitations. First, WM updating was measured as the residual
variance of a single task after accounting for WM capacity. This means that the latent
WM updating measure was not a pure measure of WM updating, but also included mea-
surement error. This decision was mainly guided by the limited number of tasks that
could be included due to time constraints. To obtain a more reliable measure of WM
updating, it would be better to include several different WM updating tasks, just like we
used several different WM capacity tasks. Second, as this was an online study, we had
only limited control over the environment in which people completed the study. The
models accounted for self-reported noise and distractions, and we excluded partici-
pants who interacted with other browser tabs during the WM tasks. Yet, there may have
been other, unmeasured factors that could lower the reliability of our study relative to
lab-based studies. Third, our results appeared to be underpowered, despite including
759 participants, which suggests that the associations between adversity and WM in
adulthood are smaller than expected based on previous literature. Finally, our study
did not include genetic measures. It is well-established that genetic variation accounts
for a substantial portion of the individual differences in executive functions (Friedman
etal.,, 2008). However, for genetics to have confounded our study, it would need to have
caused both individual differences in cognition and in adversity exposures—produc-
ing non-causal associations between adversity and cognition. Testing this fuller picture
would require using genetically informative designs.

Future research could build on the current study in four ways. First, modeling WM
ability on a latent level using multiple tasks could be applied more broadly in the field
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of adversity research, as studies rarely directly account for the overlap in key cogni-
tive processes across WM tasks WM tasks. This is especially important for adaptation-
based research focusing on WM updating ability, as WM capacity plays a substantial
role in performance on updating tasks. Second, future work is needed to better under-
stand the role of developmental timing: is adversity experienced earlier or later in life
associated differently with WM across the lifespan? Third, more research is needed
to better understand the relationship between more objective (e.g., income-to-needs
ratio) and subjective (e.g., perceived scarcity) indicators of adversity, as well as their
respective association with cognitive functioning (Smith & Pollak, 2021). In our study,
mean INR and mean perceived scarcity correlated moderately, suggesting that they
capture similar but separable aspects of material deprivation, which could show differ-
ent associations with cognition. Fourth, the field needs to account for functional het-
erogeneity within adversity-exposed populations (Masten, 2001). In a recent study, the
majority of U.S. adolescents with low socioeconomic resources performed on par with
their privileged peers (Shariq et al.,, 2024). The deficit pattern observed in the popu-
lation as a whole was driven by a much smaller, cognitively less resilient, subgroup.
A valuable direction is to combine such a ‘person-centered’ approach with structural
equation modeling to estimate specific WM abilities among different subgroups within
adversity-exposed populations.

Conclusion

Over the last decade, adversity research has been shifting towards a more balanced
view, focusing not just on cognitive deficits but also on potential adaptations. This has
spurred a growing number of studies investigating more precise links between specific
types of adversity and different cognitive abilities. Adaptation perspectives in particu-
lar have emphasized the need to be more precise about how specific types of adversity
are associated with specific cognitive abilities. However, this increased need for preci-
sion in the measurement of cognitive abilities requires more advanced psychometric
approaches. For this, adversity researchers can draw, more than they currently do, on
decades of psychometric research focused on WM and other cognitive abilities. Here,
our psychometric investigation of WM yielded inconclusive associations with adverse
experiences in adulthood. Building on this work will ultimately lead to a better under-
standing of the unique abilities that develop in contexts of adversity, as well as more
precise intervention targets.
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6.1 Fitting the pieces together

In the preceding chapters, I apply a methodological approach—grounded in Drift Dif-
fusion Modeling (DDM) and structural equation modeling—to measure executive func-
tioning (EF) abilities in people exposed to adversity. Using DDM, I translate raw per-
formance into three distinct cognitive processes: the speed of evidence accumulation
(drift rate), response caution (boundary separation), and speed of stimulus encoding
and response execution (non-decision time). Using structural equation modeling, I
investigated the extent to which cognitive processes are task-general (shared across
tasks) or task-specific (unique to particular tasks). I investigate associations between
these cognitive processes and exposure to three types of adversity: threat (Chapters
2-5), material deprivation (Chapters 2, 3, and 5), and unpredictability (Chapters 4 and
5). In addition, I investigate associations across different developmental stages, focus-
ing on middle childhood (Chapter 2), young adulthood (Chapter 4), and adulthood
(Chapters 3 and 5).

Taken together, I show that adversity researchers analyzing raw performance (e.g.,
mean response time, accuracy) will overestimate the association between adversity
exposure and specific EF abilities. This general conclusion is based on three key find-
ings. The first key finding, supported by Chapters 2-4 (but not Chapter 5), is that people
with more exposure to adversity show lower task-general processing speed (as mea-
sured using DDM’s drift rate parameter). That is, they respond more slowly largely due
to cognitive processes that are shared across different EF tasks. The second key find-
ing, also supported by Chapters 2-4, is that after accounting for task-general processing
speed, the specific EF abilities of people with more exposure to adversity do not appear
to be lower (or higher) than those of people with less exposure to adversity. In fact,
in Chapter 2, five out of six associations with task-specific drift rates were practically
equivalent to zero, suggesting intact processing. The third key finding, supported by
Chapters 2 and 4 (but not Chapter 3), is that people with more exposure to adversity
use different strategies on EF tasks. Specifically, I find that children with more exposure
to household threat (but not material deprivation) respond more cautiously (as mea-
sured with DDM’s boundary separation parameter), and that young adults with more
exposure to childhood threat and unpredictability process information more holisti-
cally.

6.2 Key finding |: Adversity exposure is associated with lower task-gen-
eral processing speed

In the preceding chapters, I interpret the negative association between adversity expo-
sure and task-general drift rate as reflecting lower general speed of processing. This
interpretation follows from specific patterns observed in these studies, and aligns with
previous literature. In Chapter 2, the task-general drift rate loaded equally strongly on
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drift rates of EF tasks as well as a basic processing speed task. Similarly, in Chapter 3,
loadings were comparable across experimental conditions of EF tasks (i.e., the switch
or incongruent condition, requiring EF ability), non-experimental conditions (i.e., the
repeat or congruent condition, not requiring EF ability), and a basic processing speed
task (not requiring EF ability). In Chapter 4, performance differences on the Flanker
task were explained mostly by the strength of perceptual processing, not by the ability
to inhibit distractions. Combined, these results support the view that task-general drift
rate captures processes that are not unique to specific EF tasks.

The processing speed interpretation of task-general drift rate is consistent with
recent studies applying DDM to EF tasks (Frischkorn et al., 2019; Hedge et al., 2022;
Loffler et al.,, 2024). These studies found that speed of processing mostly—and in some
cases fully—explained shared variance in drift rates across EF tasks. One study found
that task-general drift rate correlated only moderately with a general intelligence fac-
tor (r = .43) and a working memory capacity factor (r = .41), while the latter two cor-
related more strongly with each other (r=.76) (Loffler et al.,, 2024). This suggests that
the task-general drift rate factor of EF tasks is related to, but conceptually distinct from,
general intelligence and working memory capacity.

However, a competing interpretation is that shared variance among EF tasks rep-
resents executive attention, which refers to a general ability to focus on task-relevant
information while ignoring irrelevant distractions (Mashburn et al., 2023; Zelazo &
Carlson, 2023). Specifically, executive attention is thought to support a person’s ability
to maintain information in working memory for immediate processing, and to disen-
gage from information that is no longer relevant (Burgoyne & Engle, 2020; Shipstead
et al,, 2016). Executive attention can offer a mechanistic explanation for the general
factor that accounts for variance across many cognitive tasks, often referred to as gen-
eral intelligence or g (Burgoyne et al., 2022). Thus, shared variance across EF tasks
could reflect general executive processes, rather than basic processing speed. A simi-
lar argument is made by process overlap theory, which states that the general factor
reflects a shared dependence on general executive processes (Kovacs & Conway, 2016).
Importantly, process overlap theory does not consider the general factor to be a unitary
cognitive process that causes differences in specific abilities. Rather, the general factor
arises as a statistical artifact as specific cognitive abilities draw from a shared set of
general processes (Kovacs & Conway, 2019). This is an important distinction: while the
task-general factor may resemble a unitary process in latent models, it could actually
arise from a combination of (partially) independent processes.

Task-general drift rate could similarly reflect several processes. Differences in
drift rates might reflect a combination of task-specific processes (e.g., EF abilities),
state factors (e.g., motivation, fatigue), and trait factors (e.g., general speed of process-
ing, functional or structural brain differences) (Weigard & Sripada, 2021). At the same
time, task-general drift rate appears to be more stable over time (Schubert et al., 2016;
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Weigard et al,, 2021). It also has better convergent validity, correlating, for instance,
with self-report measures of self-control, which is conceptually similar to EF (Weigard
et al, 2021). However, these studies did not account for adversity exposure. It is possi-
ble that task-general drift rate is more strongly influenced by state factors for people
with more adversity exposure. Thus, processing speed may be but one potential ex-
planation for the negative associations we observed between adversity exposure and
task-general drift rate; other explanations may include motivation, stress, fatigue, and
a strategic deployment of cognitive resources. This also means that lower task-general
drift rate does not necessarily (only) reflect a cognitive deficit.

More work is needed to better understand why exposure to adversity is negatively
associated with task-general drift rate. To the extent that it reflects basic processing
speed, it could partially be the result of structural and/or functional brain changes,
like reduced white matter tract integrity (Fuhrmann et al., 2020; Kievit et al., 2016).
White matter tracts support information processing and communication between key
networks involved in EF (Ribeiro et al., 2024). Childhood exposure to threat and de-
privation has been associated with reduced white matter tract integrity (McLaughlin
et al.,, 2019). Changes in white matter associated with childhood adversity appear to
persist into adulthood (McCarthy-Jones et al., 2018), which could explain the associa-
tions between childhood adversity and task-general drift rate in adulthood in Chapter
3. Relatedly, early exposure to cognitive deprivation (i.e., a lack of cognitive stimulation)
disrupts the development of basic sensory and perceptual processes, which can have
negative downstream effects on the development of EF (Rosen et al., 2019). Yet, task-
general drift rate may atleast partly reflect processes that are more context-dependent,
such as EF engagement or task familiarity (Niebaum & Munakata, 2023), rather than
basic processing speed. Such processes may be more malleable than basic processing
speed, e.g., through task manipulations that increase the familiarity of content, or that
make people more willing to exert effort. This could make them valuable targets for
interventions.

6.3 Key finding 2: Adversity exposure is not associated with specific EF
abilities

A second consistent finding throughout my dissertation is that after controlling for
task-general processing speed, adversity exposure is not associated with specific EF
abilities, as measured with drift rates. In Chapter 2, I show that children with more
exposure to household threat in the preceding year exhibit intact drift rates on an in-
hibition, attention shifting, and mental rotation task, after accounting for lower task-
general processing speed. In addition, material deprivation is associated with intact
drift rates on an inhibition and mental rotation task, as well as intact task-general pro-
cessing speed. Chapter 3 paints a similar, but more nuanced picture, by including two
inhibition tasks, three attention-shifting tasks, and a basic processing speed task. After
accounting for task-general processing speed, adversity is negatively associated with
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several task-specific drift rates, particularly effects of childhood threat on attention-
shifting tasks. However, the correlations between these task-specific drift rates are low,
even between tasks that are thought to measure the same EF ability. Thus, it appears
that they do not capture inhibition or attention-shifting ability, but rather more unique
features of individual tasks. In Chapter 4, which focuses on the Flanker task, young
adults’ exposure to childhood threat and unpredictability is not associated with inhi-
bition ability. Rather, their lower performance on the task is mostly driven by lower
perceptual processing. Finally, in Chapter 5, exposure to adversity in adulthood is not
associated with either working memory updating or working memory capacity.

Interpreting task-specific associations with adversity exposure

The finding that adversity exposure is not associated with specific EF abilities is strik-
ing given that lower raw performance on EF tasks is often interpreted as such. Such
conclusions are often based on performance on a single task. For instance, lower per-
formance on inhibition tasks has been interpreted as lower inhibition ability (Farah et
al,, 2006; Fields et al., 2021; Mezzacappa, 2004; Mittal et al., 2015; Noble et al., 2005).
Similarly, higher performance on attention-shifting tasks has been interpreted as an
enhanced attention shifting ability (Fields et al.,, 2021; Howard et al., 2020; Mittal et al,,
2015; Nweze et al,, 2021; Young et al,, 2022). My dissertation highlights a crucial lim-
itation of this approach. Task-general processes make it difficult to infer specific abili-
ties based on the performance on a single task, even when using DDM rather than raw
performance measures. Even after accounting for task-general processes, though, re-
maining variance may not capture specific EF abilities (but rather other factors, such as
content or familiarity), as suggested by Chapter 3 as well as prior literature (Frischkorn
etal,, 2019; Loffler et al., 2024).

One reason for not finding ability-specific associations could be that content ef-
fects mask the effects of specific EF abilities. Task performance is known to vary with
task content (e.g., numbers, letters, or geometric shapes), and studies in cognitive psy-
chology often account for this by sampling tasks with different types of content (Lerche
etal.,, 2020). Some research shows that people from adversity may be particularly sen-
sitive to content effects, and that their performance on EF tasks could be improved by
using more real-world content (Young et al,, 2022). With the exception of Chapter 2,
the studies in this dissertation involved more abstract content, which may be one ex-
planation for lower task-general processing speed. In addition, it may also explain the
negative associations in Chapter 3 between childhood adversity and task-specific drift
rates on attention-shifting tasks, despite drift rates between tasks correlating weakly.
All attention-shifting tasks used abstract content, but the specific type of content dif-
fered across tasks. Thus, content effects may have lowered processing on these tasks
in specific ways unrelated to the EF ability—the actual target of measurement in these
tasks.
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Low reliability of traditional EF tasks

Further down the psychometric path, the elephant in the room is that commonly used
EF tasks may not be sufficiently reliable to detect individual differences in EF (Draheim
etal, 2019; Hedge et al,, 2018; Rouder & Haaf, 2019). Many EF tasks, like the Flanker
or Simon task, were developed by experimental psychologists with the aim to obtain
robust group-level experimental effects (e.g., the Flanker effect, in which people are on
average slower on incongruent trials compared to congruent trials) (Cronbach, 1957).
These tasks achieve this by minimizing within-person variability. However, low within-
person variability makes them less suitable for studying individual differences. In fact,
arecent study showed that over 1,000 trials are needed to obtain reliable estimates of
individual differences in the Stroop or Flanker effect (Lee et al., 2023). Needless to say,
the studies reported in this dissertation did not even get close to these trial numbers.
Nor do the majority of studies in the broader adversity and developmental literature.
This is exemplified by the ABCD study, which is currently used in over 1,200 articles
(https://abcdstudy.org/publications/), including the study in Chapter 2. The EF tasks
included in the ABCD study contain as few as 20 across conditions for the Flanker task.

An inconvenient but important conclusion is that most research in the adversity
literature lacks reliable measurements to adequately assess specific EF abilities. In light
of this issue, some have argued that large-scale developmental data collections should
make fundamentally different trade-offs by lowering the number of participants and
increasing the number of trials for cognitive tasks (Lee et al., 2023). Although I agree in
theory, there are important constraints that make this unfeasible in practice. In most
large cohort studies like the ABCD study, cognitive assessments are only a relatively
small part, and so the time spend on cognitive tasks trades off with other important
measurements. Even disregarding time as a limiting factor, administering hundreds of
trials could decrease motivation and effort. These limitations may be especially large
when testing children or people from disadvantaged backgrounds (Niebaum & Mu-
nakata, 2023). The statistical techniques used in my dissertation do not by themselves
solve this issue. Promising potential solutions include tasks that require accurate but
not speeded responding (Draheim etal., 2021; Draheim et al., 2022) and tasks involving
gamification, which produce high engagement and arousal, increasing within-person
variability (Kucina et al., 2023).

6.4 Key finding 3: Adversity exposure is associated with the use of differ-
ent strategies

My dissertation finds some evidence that exposure to adversity is associated with the
use of different cognitive strategies. First, [ find evidence for differences in speed-accu-
racy trade-offs, reflecting a person’s response caution. A person with higher response
caution uses the strategy (deliberate or not) of slowing down their responses in or-
der to increase their accuracy. In Chapter 2, I find that children who experienced more
household threat in the preceding year (but not material deprivation) respond more
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cautiously than children with less exposure to household threat. However, [ do not ob-
serve differences in response caution in young adults with more exposure to childhood
threat and unpredictability (Chapter 4), nor in adults with more exposure to threat and
deprivation in childhood or adulthood (Chapter 3). Thus, although exposure to threat
is associated with children prioritizing accuracy over speed, the same is not true for
(young) adults. Second, Chapter 4 suggests that young adults with more exposure to
childhood threat and unpredictability have a more holistic processing style, rather than
a detail-oriented processing style.

Speed-accuracy trade-offs

The results in Chapter 2 are consistent with research on optimal speed-accuracy trade-
offs in the face of threats. Individuals across different species tend to be more cautious
if they were recently exposed to sources of threat such as violence or predation (Chit-
tka et al., 2009). Making a mistake (e.g., wrongly assuming that there is no predator
nearby) can be costly, and therefore it pays to accumulate more information if past en-
vironments tended to be more dangerous. However, the opposite is true in the face of
immediate danger. In such cases, responding quickly can prevent serious harm, which,
all else being equal, outweighs the potential cost of acting too fast (e.g., failing to seize
potential resources) (Pirrone et al.,, 2014).

There is strong evidence that detecting and responding to threat in both scenarios
is facilitated by distinct neural pathways: a fast but less accurate pathway in the case
of an immediate threat, and a slower but more accurate pathway when there is no im-
mediate threat (LeDoux, 2000). The first relies on short subcortical pathways that pro-
vide rapid but coarse information, and do not involve extensive evidence accumulation.
Under conditions of stress, people use simpler and faster stimulus-response learning
strategies and rely more on habits (Schwabe et al., 2007; Schwabe & Wolf, 2009). In
contrast, in the absence of immediate threat, processing relies on longer cortical path-
ways that do involve evidence accumulation, as modeled using the DDM (Trimmer et
al,, 2008). Chapter 2 is consistent with this theory: the test setting did not convey an im-
mediate threat and so did not require an immediate response, but children with more
exposure to threat did accumulate more evidence.

The results of Chapter 3 and 4 are not consistent with this theory, which may be
explained by the temporal gap between the exposure to adversity and the testing ses-
sion. In Chapter 2, this gap was relatively small; children reported on their exposure
to threat in the preceding year. Hence, it is possible that their strategies were still at-
tuned to these recent experiences, which would explain their increased response cau-
tion. In Chapter 3 and 4, involving (young) adults, the gap was larger, especially when
they retroactively reported on exposure to childhood adversity. Even though Chapter 3
did focus on adversity exposure in adulthood, the adversity measures spanned several
years and thus did not necessarily reflect recent adversity exposure. It is possible that
differences in how people make speed-accuracy trade-offs in response to threat expo-
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sure remain plastic, such that a preference for accuracy over speed may diminish or
even disappear if threats become less frequent. This is an open and interesting ques-
tion for future research.

Holistic versus detail-oriented processing style

Beyond speed-accuracy trade-offs, Chapter 4 also provides evidence for differences in
how people with more exposure to childhood adversity process information. Across
three studies, the strength of perceptual processing on the Flanker task was lower for
people with more exposure to both violence and unpredictability, which may indicate
a deficit in information processing. However, the strength of perceptual processing in-
teracted with a person’s processing style. In the context of the Flanker task, strength
of perceptual processing refers to the amount of visual information that people extract
from the arrows. For people with more exposure to childhood violence (and to a lesser
extent unpredictability), lower strength of perceptual processing was related to more
holistic processing rather than featural or detail-oriented processing. In contrast, peo-
ple with less exposure to childhood violence had a higher strength of perceptual pro-
cessing, which was related to more detail-oriented processing.

Although the interaction between perceptual processing and holistic processing
requires more research, I speculate that a more holistic processing style in people with
more adversity exposure may (partially) account for lower strength of perceptual pro-
cessing. It could relate to the speed-accuracy trade-off discussed above: Aside from
taking more time to accumulate information, adopting a more holistic processing style
facilitates the detection of potential threats compared to a more focused processing
style. The Shrinking Spotlight Model used to decompose Flanker performance in Chap-
ter 4 distinguishes between a processing parameter (i.e., strength of perceptual pro-
cessing) and two attention parameters (i.e., the initial width of the attention scope, and
the rate at which attention narrows over time). A more holistic processing style could
affect both. On the one hand, holistic processing could lower the strength of perceptual
processing as stimuli are processed as a whole instead of as individual sources of in-
formation. On the other hand, attention would be spread out more evenly across all
stimuli, and narrowing attention down to the central target would be more difficult.

Unfortunately though, I could not accurately recover the two attention parame-
ters in isolation, and instead computed a ratio between them (in line with White et al,,
2018). Future studies with a larger number of trials may be able to recover the atten-
tion parameters. Additionally, future research could include more direct measures of
attention such as eye-tracking and pupillometry. Previous research suggests that peo-
ple with a more holistic processing style have fewer fixations on individual items as
well as larger saccades (Schreiter & Vogel, 2023, 2024). Thus, it would be insightful to
investigate whether such attention features provide a common explanation for holistic
processing as well as a lower strength of perceptual processing on inhibition tasks.
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6.5 Developing a roadmap for adversity research

Integrating deficit and adaptation frameworks

Adversity researchers generally acknowledge that exposure to adversity can both im-
pair and lead to adaptations in cognitive abilities (Ellis et al., 2022; Frankenhuis, Young,
et al,, 2020; Frankenhuis & Weerth, 2013; Noble et al., 2021). Several studies suggest
that the same person can show deficits in some abilities yet enhancements in other
abilities.

For instance, people with more exposure to adversity were slower on inhibition tasks
but faster on attention-shifting tasks (Fields et al., 2021; Mittal et al., 2015), and slower
on a working memory capacity task but faster on a working memory updating task (Y-
oung et al,, 2018). As has become clear throughout my dissertation, such comparisons
of individual tasks are problematic given that tasks share cognitive processes. A more
realistic vantage point appears to be that both types of processes can operate within
the same task. Using cognitive modeling, future research will be well-positioned to test
more precise predictions about how deficit and adaptation processes interact.

Researchers need to deal with the fact that task performance is influenced by
both task-general and ability-specific processes. Deficit frameworks predict impair-
ments in both specific abilities as well as general processing (e.g., associated with im-
pairments in more localized as well as more widely connected brain networks) (Sh-
eridan & McLaughlin, 2014; Tucker-Drob, 2013). Still, as impairments in general and
specific processes may have different origins (e.g., functional or structural changes in
the brain), differentiating them using cognitive modeling and structural equation mod-
eling affords testing more precise predictions. Arguably, the existence of task-general
processes poses a bigger challenge for adaptation frameworks, which predict that spe-
cific types of adversity enhance specific cognitive abilities (Ellis et al., 2022; Franken-
huis, Young, et al., 2020; Frankenhuis & Weerth, 2013). Testing such predictions will
require accounting for general processes and ideally sampling two or more tasks for
each ability.

Abilities enhanced by adversity may even cross the boundaries of traditional EF
tasks. For instance, several studies have found that people from lower socioeconomic
backgrounds are more attentive to task-irrelevant sounds (D’angiulli, Van Roon, et al,,
2012; Giuliano et al,, 2018; Hao & Hu, 2024; Stevens et al., 2009). Children from lower
socioeconomic backgrounds also appear more attentive to peripheral visual informa-
tion (Mezzacappa, 2004). Similarly, exposure to adversity might lead to a more diffuse
scope of attention to facilitate tracking the environment for potential threats and op-
portunities. We did not find support for our initial hypothesis (see the Introduction
of Chapter 4) that this might make people better at detecting subtle changes and pe-
ripheral stimuli, i.e., an enhanced ability to detect specific stimuli in the broader envi-
ronment. However, as discussed in section 6.4, we did find a tendency towards holistic

152



General discussion

processing. This may be an alternative manifestation of diffuse attention, where people
do not so much attend to individual features in the periphery, but rather do so more
holistically. Both cognitive modeling and structural equation modeling can help to illu-
minate such phenotypes and how they affect performance across traditional EF tasks.

Integrating deficit and adaptation frameworks also requires quantifying support
in favor of the null hypothesis (i.e., intact ability), rather than only against the null
hypothesis (i.e., impaired or enhanced ability) (Harms & Lakens, 2018; Lakens et al.,
2018). Cognitive adaptations may not always lead to enhancements, but could also
translate to intact ability, especially when performance is simultaneously influenced
by deficits (Bignardi et al., 2024; Young et al., 2024). Using practical equivalence test-
ing, [ find some evidence for intact specific abilities after accounting for task-general
processing speed, especially in Chapter 2. Equally importantly, in many cases I found
inconclusive results, with evidence supporting neither adversity-related differences
nor practical equivalence. Throughout, I have used a standardized effect of 0.1 as the
cut-off for practical equivalence, with effects smaller than 0.1 considered practically
equivalent to zero. This cut-off is arbitrary: some small effects can have a substantial
impact on the population level, and conversely, some effects above 0.1 may not be all
that meaningful. As researchers learn more about which effects sizes are associated
with meaningful outcomes (and which are not), they can adopt more theory-guided
cut-offs.

Better understanding content and context effects on EF performance

Some developmental psychologists argue that abstract EF tasks may disadvantage peo-
ple from more disadvantaged backgrounds, e.g., due to less formal education (Doebel,
2020; Frankenhuis, Young, et al.,, 2020; Miller-Cotto et al., 2022; Niebaum & Munakata,
2023). Common EF tasks may disadvantage children from minority groups because
they were developed for, and normed based on children from majority groups (Miller-
Cotto et al,, 2022). Children from minority groups may in part perform lower because
EF tasks are divorced from their everyday experiences and cultural and social norms.
They involve unfamiliar researchers and test settings that are unlike the environments
they are used to (Doebel, 2020). From an adaptive perspective, it has been argued that
people may perform best when task conditions, including the stimuli that are used,
match the conditions in which they developed their cognitive abilities (Frankenhuis,
Young, et al,, 2020). Consistent with this idea, real-world content has been found to
affect performance on EF tasks, and in some cases this effect is larger for people with
more exposure to adversity (Young et al., 2022). Finally, abstract testing conditions
may even lower children’s willingness to engage EF, for instance, because the task does
not seem relevant or because it does not seem worth the effort (Niebaum & Munakata,
2023). Thus, to understand the effect of adversity on EF performance, we may need to
understand performance in people’s broader ecological context.
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Although it is important to develop more equitable and valid EF tasks, such tasks
risk the same psychometric limitations that have been central in my dissertation. Re-
searchers should not assume that more ecologically relevant tasks are less susceptible
to the influence of general processes and speed-accuracy trade-offs. For instance, dif-
ferent types of content could affect performance through different pathways: it may
influence general processes, specific abilities, response caution, or a combination of
these and other factors. Cognitive modeling and structural equation modeling can play
a key role in better understanding which cognitive processes are affected by different
types of task manipulations.

To focus on one example, cognitive modeling can illuminate which dimensions of
stimulus content are responsible for closing (or widening) performance gaps. One key
dimension may be how familiar the content is to the person taking the test, that is, the
extent to which a stimulus has been encountered before (Niebaum & Munakata, 2023).
On the one hand, more familiar task content may increase ability-specific drift rates.
For instance, inhibiting distractors may be easier when the target stimulus is more fa-
miliar, and keeping track of information in working memory may be easier if the in-
formation relates to previous experiences. On the other hand, more familiar task con-
tent may increase task-general drift rate, for instance, if familiar content reduces the
cognitive burden of the task regardless of the EF ability that is targeted. Performance
differences may also arise from other content dimensions, and their influence on per-
formance could stem from other cognitive processes. Stimuli that are more valenced
could influence response caution (e.g., being more careful when a stimulus makes you
anxious) or, in some cases, response bias (e.g., a bias towards threatening stimuli). Fi-
nally, real-world stimuli may often be more visually complex than standard abstract
stimuli (e.g., numbers, shapes). This could make it more difficult to visually encode the
stimulus, increasing non-decision times. Testing these effects using cognitive modeling
can illuminate if and why certain types of content negatively or positively affect per-
formance.

6.6 Concluding remarks

“We pass through this world but once. Few tragedies can be more extensive than the
stunting of life, few injustices deeper than the denial of an opportunity to strive or even
to hope, by a limit imposed from without, but falsely identified as lying within.” Stephen
J. Gould (1980). The mismeasure of man.

Cognitive assessments affect millions of lives each year. Performance scores in-
fluence academic trajectories, selection of people into jobs, and are at the basis for a
variety of interventions and policies. They also shape how people view their own po-
tential, and how their potential is viewed by others. It is therefore crucial that our in-
terpretations of cognitive performance accurately reflect a person’s ability. My disser-
tation shows that for people from adverse environments, who tend to perform lower
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on cognitive tasks, this may often not be so. Hence, research may underestimate a per-
son’s true EF abilities, and attempt to fix things that are not actually ‘broken’, while
potentially overlooking areas requiring attention. Fortunately, adversity researchers
can stand on the shoulders of decades of research in cognitive psychology that allows
for a more precise assessment of cognitive abilities. In particular, cognitive modeling
will be an indispensable instrument in the toolbox of the next generation of adversity
researchers.

The use of DDM and structural equation modeling need not be limited to basic
scientific research; instead, it could be directly used in applied contexts, such as clini-
cal or high-stakes testing. Now that digital testing is widespread and affordable, there
is no good reason to hold onto raw performance measures. Instead, screening and as-
sessment batteries could directly incorporate DDM and structural equation modeling
to provide more meaningful estimates of cognitive processes. Beyond that initial step,
insights from these techniques could be used to tailor assessments to individuals. For
instance, based on future scientific insights, assessment batteries could personalize in-
structions and task content in response to initial estimates of cognitive processes, and
track their change over time. This way, cognitive modeling has the potential to directly
impact children’s and adults’ lives.
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Footnotes

! It is also possible to have the decision boundaries correspond to distinct response
options. For instance, if the task requires people to classify faces as expressing either
an angry or happy emotion, the boundaries could correspond to the ‘angry’ and ‘happy’
response, respectively. This specification is useful if the research question pertains to
decision preferences (e.g., do people tend to prefer option A over option B? Do people
with more exposure to threat tend to interpret facial expressions as more negative?).

2 There are two caveats to this statement. First, the standard DDM also contains
the starting point of the evidence accumulation process and provides a measure of re-
sponse bias. When the process starts closer to one boundary relative to the other, it
reaches this boundary faster and more frequently (also increasing the false positive
rate), while responses terminating at the other boundary are slower and less frequent.
Modeling the starting point makes most sense if the decision boundaries correspond
to distinct response options (e.g., angry versus happy face) rather than correct versus
incorrect responses. In the latter case, the response bias parameter is usually fixed to
be equidistant to each boundary. As this is the case throughout this dissertation, I do
not consider the starting point here. Second, the DDM also allows for additional pa-
rameters that capture inter-trial variability in drift rate, boundary separation, and/or
non-decision time. For instance, drift rates may decrease as people start to lose moti-
vation. Simulation studies indicate that several hundreds of trials are necessary to ob-
tain stable estimates of these variability parameters, many more than were used in the
cognitive tasks included in this dissertation.

3 A fourth DDM parameter, the starting point, represents an initial bias towards
one of the two decision options (e.g., a tendency to classify facial expressions as angry
that extends to neutral faces). Note that allowing the starting point to vary only makes
sense if response options differ in valence (e.g., happy and angry faces, which the cur-
rent study does not include and thus is unable to examine).

* The preregistration also included the Picture Vocabulary Task. However, after
accessing the data we realized that this task was implemented using computerized
adaptive testing (Luciana et al., 2018). This makes it unsuitable for DDM, as the model
assumes the level of difficulty is the same across trials.

|57






Bibliography
Bibliography

Ahmed, S., Tang, S., Waters, N., & Davis-Kean, P. (2018). Executive function and acade-
mic achievement: Longitudinal relations from early childhood to adolescence. Journal
of Educational Psychology, 111. https://doi.org/10.1037/edu0000296

Algarin, C.,, Karunakaran, K. D., Reyes, S., Morales, C., Lozoff, B., Peirano, P, & Biswal,
B. (2017). Differences on brain connectivity in adulthood are present in subjects with
iron deficiency anemia in infancy. Frontiers in Aging Neuroscience, 9. https://doi.org/
10.3389/fnagi.2017.00054

Alloway, T. P, & Alloway, R. G. (2010). Investigating the predictive roles of working mem-
ory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1),
20-29. https://doi.org/10.1016/j.jecp.2009.11.003

Ankan, A., Wortel, I. M. N,, & Textor, J. (2021). Testing graphical causal models using the
R package “dagitty.” Current Protocols, 1(2), e45. https://doi.org/10.1002/cpz1.45

Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychologi-
cal Science, 15(9), 610-615. https://doi.org/10.1111/j.0956-7976.2004.00728.x

Assari, S. (2020). Mental rotation in American children: Diminished returns of parental
education in black families. Pediatric Reports, 12(3), 130-141. https://doi.org/10.
3390/pediatric12030028

Barkley, R. A. (2012). Executive functions: What they are, how they work, and why they
evolved. Guilford Press.

Bastian, C. C. von, Blais, C.,, Brewer, G., Gyurkovics, M., Hedge, C., Katamata, P, Meier, M.,
Oberauer,; K., Rey-Mermet, A., Rouder, J. N,, Souza, A. S., Bartsch, L. M., Conway, A. R. A,
Draheim, C., Engle, R. W,, Friedman, N. P, Frischkorn, G. T, Gustavson, D. E., Koch, I, ...
Wiemers, E. (2020). Advancing the understanding of individual differences in attentional
control: Theoretical, methodological, and analytical considerations. PsyArXiv. https://
doi.org/10.31234 /osf.io/x3b9k

Bauer, D. J. (2017). A more general model for testing measurement invariance and
differential item functioning. Psychological Methods, 22, 507-526. https://doi.org/10.
1037/met0000077

Belsky, ]J., Schlomer, G. L., & Ellis, B. ]. (2012). Beyond cumulative risk: Distinguish-
ing harshness and unpredictability as determinants of parenting and early life his-

159


https://doi.org/10.1037/edu0000296
https://doi.org/10.3389/fnagi.2017.00054
https://doi.org/10.3389/fnagi.2017.00054
https://doi.org/10.1016/j.jecp.2009.11.003
https://doi.org/10.1002/cpz1.45
https://doi.org/10.1111/j.0956-7976.2004.00728.x
https://doi.org/10.3390/pediatric12030028
https://doi.org/10.3390/pediatric12030028
https://doi.org/10.31234/osf.io/x3b9k
https://doi.org/10.31234/osf.io/x3b9k
https://doi.org/10.1037/met0000077
https://doi.org/10.1037/met0000077

Bibliography

tory strategy. Developmental Psychology, 48(3), 662-673. https://doi.org/10.1037/
a0024454

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society: Se-
ries B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.
th02031.x

Bignardi, G., Mareva, S., & Astle, D. E. (2024). Parental socioeconomic status weakly
predicts specific cognitive and academic skills beyond general cognitive ability. Devel-
opmental Science, 27(2), e13451. https://doi.org/10.1111/desc.13451

Bij, A. K. van der, Weerd, S. de, Cikot, R. ]. L. M,, Steegers, E. A. P,, & Braspenning, J. C. C.
(2003). Validation of the Dutch Short Form of the State Scale of the Spielberger State-
Trait Anxiety Inventory: Considerations for usage in screening outcomes. Community
Genetics, 6(2), 84-87. https://doi.org/10.1159/000073003

Blair, C., & Raver, C. C. (2012). Child development in the context of adversity. The Amer-
ican Psychologist, 67(4), 309-318. https://doi.org/10.1037/a0027493

Blair, C,, & Raver, C. C. (2014). Closing the achievement gap through modification of
neurocognitive and neuroendocrine function: Results from a cluster randomized con-
trolled trial of an innovative approach to the education of children in kindergarten.
PLOS ONE, 9(11), e112393. https://doi.org/10.1371/journal.pone.0112393

Blakemore, S.-]., & Choudhury, S. (2006). Development of the adolescent brain: Impli-
cations for executive function and social cognition. Journal of Child Psychology and
Psychiatry, and Allied Disciplines, 47(3-4), 296-312. https://doi.org/10.1111/j.1469-
7610.2006.01611.x

Bogacz, R.,, Wagenmakers, E.-]., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural
basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33(1), 10-16. https://
doi.org/10.1016/j.tins.2009.09.002

Bos, K. ], Fox, N., Zeanah, C. H., & Nelson III, C. A. (2009). Effects of early psychosocial
deprivation on the development of memory and executive function. Frontiers in Behav-
ioral Neuroscience, 3, 16. https://doi.org/10.3389 /neuro.08.016.2009

Bradley, R. H., Corwyn, R. E, McAdoo, H. P, & Garcia Coll, C. (2001). The home environ-
ments of children in the United States part I: Variations by age, ethnicity, and poverty
status. Child Development, 72(6), 1844-1867. https://doi.org/10.1111/1467-8624.t
01-1-00382

160


https://doi.org/10.1037/a0024454
https://doi.org/10.1037/a0024454
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/desc.13451
https://doi.org/10.1159/000073003
https://doi.org/10.1037/a0027493
https://doi.org/10.1371/journal.pone.0112393
https://doi.org/10.1111/j.1469-7610.2006.01611.x
https://doi.org/10.1111/j.1469-7610.2006.01611.x
https://doi.org/10.1016/j.tins.2009.09.002
https://doi.org/10.1016/j.tins.2009.09.002
https://doi.org/10.3389/neuro.08.016.2009
https://doi.org/10.1111/1467-8624.t01-1-00382
https://doi.org/10.1111/1467-8624.t01-1-00382

Bibliography

Braem, S. (2017). Conditioning task switching behavior. Cognition, 166, 272-276.
https://doi.org/10.1016/j.cognition.2017.05.037

Brose, A., Schmiedek, F, Lévdén, M., & Lindenberger, U. (2012). Daily variability in
working memory is coupled with negative affect: The role of attention and motivation.
Emotion, 12(3), 605-617. https://doi.org/10.1037 /20024436

Burgoyne, A. P, & Engle, R. W. (2020). Attention control: A cornerstone of higher-order
cognition. Current Directions in Psychological Science, 29(6), 624-630. https://doi.org/
10.1177/0963721420969371

Burgoyne, A. P,, Mashburn, C. A, Tsukahara, J. S., & Engle, R. W. (2022). Attention control
and process overlap theory: Searching for cognitive processes underpinning the posi-
tive manifold. Intelligence, 91, 101629. https://doi.org/10.1016/j.intell.2022.101629

Burnham, K. P, & Anderson, D. R. (Eds.). (2002). Model selection and multimodel infer-
ence: A practical information-theoretic approach. Springer New York.

Bywaters, P, Bunting, L., Davidson, G., Hanratty, ]., Mason, W., McCartan, C., & Steils, N.
(2016). The relationship between poverty, child abuse and neglect: An evidence review.
Joseph Rowntree Foundation. https://www.jrf.org.uk/child-poverty/the-relationship-
between-poverty-child-abuse-and-neglect-an-evidence-review

Carlozzi, N. E., Beaumont, |. L., Tulsky, D. S., & Gershon, R. C. (2015). The NIH Toolbox
Pattern Comparison Processing Speed Test: Normative data. Archives of Clinical Neu-
ropsychology, 30(5), 359-368. https://doi.org/10.1093/arclin/acv031

Cermakova, P, Chlapecka, A., Csajbok, Z., Andryskova, L., Brazdil, M., & Mareckova, K.
(2023). Parental education, cognition and functional connectivity of the salience net-
work. Scientific Reports, 13(1), 2761. https://doi.org/10.1038/s41598-023-29508-w

Chambers, C. D., & Tzavella, L. (2021). The past, present and future of Registered Re-
ports. Nature Human Behaviour, 6(1), 29-42. https://doi.org/10.1038/s41562-021-
01193-7

Chiappe, P, Hasher, L., & Siegel, L. S. (2000). Working memory, inhibitory control,
and reading disability. Memory & Cognition, 28(1), 8-17. https://doi.org/10.3758/BF
03211570

Chittka, L., Skorupski, P,, & Raine, N. E. (2009). Speed-accuracy tradeoffs in animal deci-
sion making. Trends in Ecology & Evolution, 24(7), 400-407. https://doi.org/10.1016/
jtree.2009.02.010

l6l


https://doi.org/10.1016/j.cognition.2017.05.037
https://doi.org/10.1037/a0024436
https://doi.org/10.1177/0963721420969371
https://doi.org/10.1177/0963721420969371
https://doi.org/10.1016/j.intell.2022.101629
https://www.jrf.org.uk/child-poverty/the-relationship-between-poverty-child-abuse-and-neglect-an-evidence-review
https://www.jrf.org.uk/child-poverty/the-relationship-between-poverty-child-abuse-and-neglect-an-evidence-review
https://doi.org/10.1093/arclin/acv031
https://doi.org/10.1038/s41598-023-29508-w
https://doi.org/10.1038/s41562-021-01193-7
https://doi.org/10.1038/s41562-021-01193-7
https://doi.org/10.3758/BF03211570
https://doi.org/10.3758/BF03211570
https://doi.org/10.1016/j.tree.2009.02.010
https://doi.org/10.1016/j.tree.2009.02.010

Bibliography

Conway, A. R. A, Kane, M. |, Bunting, M. F, Hambrick, D. Z., Wilhelm, O., & Engle, R.
W. (2005). Working memory span tasks: A methodological review and user’s guide.
Psychonomic Bulletin & Review, 12(5), 769-786. https://doi.org/https://doi.org/10.
3758/BF03196772

Conway, A. R. A, Kane, M. ], & Engle, R. W. (2003). Working memory capacity and its
relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. https://
doi.org/10.1016/j.tics.2003.10.005

Cowan, N. (2014). Working memory underpins cognitive development, learning, and
education. Educational Psychology Review, 26(2), 197-223. https://doi.org/10.1007 /s
10648-013-9246-y

Cribbie, R. A. (2007). Multiplicity control in structural equation modeling. Structural
Equation Modeling: A Multidisciplinary Journal, 14(1), 98-112. https://doi.org/10.
1080/10705510709336738

Cronbach, L.]. (1957). The two disciplines of scientific psychology. American Psycholo-
gist, 12(11), 671-684. https://doi.org/10.1037/h0043943

Curran, P. J.,, McGinley, ]. S., Bauer, D. ], Hussong, A. M., Burns, A., Chassin, L., Sher,
K., & Zucker, R. (2014). A moderated nonlinear factor model for the development of
commensurate measures in integrative data analysis. Multivariate Behavioral Research,
49(3), 214-231. https://doi.org/10.1080/00273171.2014.889594

D’angiulli, A., Lipina, S., & Olesinska, A. (2012). Explicit and implicit issues in the devel-
opmental cognitive neuroscience of social inequality. Frontiers in Human Neuroscience,
6. https://www.frontiersin.org/articles/10.3389/fnhum.2012.00254

D’angiulli, A.,, Van Roon, P. M., Weinberg, ]., Oberlander,; T., Grunau, R., Hertzman, C.,, &
Maggi, S. (2012). Frontal EEG/ERP correlates of attentional processes, cortisol and mo-
tivational states in adolescents from lower and higher socioeconomic status. Frontiers
in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00306

Dai, T, Guo, Y., & Alzheimer’s Disease Neuroimaging Initiative. (2017). Predicting indi-
vidual brain functional connectivity using a Bayesian hierarchical model. NeuroImage,
147,772-787. https://doi.org/10.1016/j.neuroimage.2016.11.048

Daly, M., & Wilson, M. (2005). Carpe diem: Adaptation and devaluing the future. The
Quarterly Review of Biology, 80(1), 55-60. https://doi.org/10.1086/431025

162


https://doi.org/10.3758/BF03196772
https://doi.org/10.3758/BF03196772
https://doi.org/10.1016/j.tics.2003.10.005
https://doi.org/10.1016/j.tics.2003.10.005
https://doi.org/10.1007/s10648-013-9246-y
https://doi.org/10.1007/s10648-013-9246-y
https://doi.org/10.1080/10705510709336738
https://doi.org/10.1080/10705510709336738
https://doi.org/10.1037/h0043943
https://doi.org/10.1080/00273171.2014.889594
https://www.frontiersin.org/articles/10.3389/fnhum.2012.00254
https://doi.org/10.3389/fnhum.2012.00306
https://doi.org/10.1016/j.neuroimage.2016.11.048
https://doi.org/10.1086/431025

Bibliography

Dang, ]. (2017). Commentary: The effects of acute stress on core executive functions: A
meta-analysis and comparison with cortisol. Frontiers in Psychology, 8, 1711. https://
doi.org/10.3389/fpsyg.2017.01711

De Leeuw, ].R. (2015).jsPsych: A JavaScript library for creating behavioral experiments
in a Web browser. Behavior Research Methods, 47(1), 1-12. https://doi.org/10.3758/s
13428-014-0458-y

DeBruine, L. (2021). Faux: Simulation for factorial designs. Zenodo. https://doi.org/10.
5281/zenodo.5513951

DeJoseph, M. L., Herzberg, M. P, Sifre, R. D., Berry, D., & Thomas, K. M. (2022). Measure-
ment matters: An individual differences examination of family socioeconomic factors,
latent dimensions of children’s experiences, and resting state functional brain connec-
tivity in the ABCD sample. Developmental Cognitive Neuroscience, 53, 101043. https://
doi.org/10.1016/j.dcn.2021.101043

Del Giudice, M., & Crespi, B. ]. (2018). Basic functional trade-offs in cognition: An inte-
grative framework. Cognition, 179, 56-70. https://doi.org/10.1016/j.cognition.2018.
06.008

Del Giudice, M., & Gangestad, S. W. (2021). A traveler’s guide to the multiverse:
Promises, pitfalls, and a framework for the evaluation of analytic decisions. Advances
in Methods and Practices in Psychological Science, 4(1). https://doi.org/10.1177/
2515245920954925

Deming, D. (2009). Early childhood intervention and life-cycle skill development: Evi-
dence from head start. American Economic Journal: Applied Economics, 1(3), 111-134.
https://doi.org/10.1257 /app.1.3.111

Denwood, M. J. (2016). Runjags: An R package providing interface utilities, model tem-
plates, parallel computing methods and additional distributions for MCMC models in
JAGS. Journal of Statistical Software, 71, 1-25. https://doi.org/10.18637 /jss.v071.i09

Diemer, M. A, Mistry, R. S., Wadsworth, M. E., Lépez, I., & Reimers, F. (2013). Best prac-
tices in conceptualizing and measuring social class in psychological research. Analyses
of Social Issues and Public Policy, 13(1), 77-113. https://doi.org/10.1111/asap.12001

Distefano, R., Fiat, A. E., Merrick, J. S., Slotkin, J., Zelazo, P. D., Carlson, S. M., & Masten,
A.S.(2021). NIH Toolbox executive function measures with developmental extensions:
Reliability and validity with preschoolers in emergency housing. Child Neuropsychol-
ogy, 27(6), 709-717. https://doi.org/10.1080/09297049.2021.1888905

163


https://doi.org/10.3389/fpsyg.2017.01711
https://doi.org/10.3389/fpsyg.2017.01711
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.5281/zenodo.5513951
https://doi.org/10.5281/zenodo.5513951
https://doi.org/10.1016/j.dcn.2021.101043
https://doi.org/10.1016/j.dcn.2021.101043
https://doi.org/10.1016/j.cognition.2018.06.008
https://doi.org/10.1016/j.cognition.2018.06.008
https://doi.org/10.1177/2515245920954925
https://doi.org/10.1177/2515245920954925
https://doi.org/10.1257/app.1.3.111
https://doi.org/10.18637/jss.v071.i09
https://doi.org/10.1111/asap.12001
https://doi.org/10.1080/09297049.2021.1888905

Bibliography

Doebel, S. (2020). Rethinking executive function and its development. Perspectives on
Psychological Science, 15(4), 942-956. https://doi.org/10.1177/1745691620904771

Donders, F. C. (1869). On the speed of mental processes. Acta Psychologica, 30, 412-
431. https://doi.org/10.1016/0001-6918(69)90065-1

Draheim, C., Mashburn, C. A., Martin, J. D., & Engle, R. W. (2019). Reaction time in
differential and developmental research: A review and commentary on the problems
and alternatives. Psychological Bulletin, 145(5), 508-535. https://doi.org/10.1037 /bul
0000192

Draheim, C., Pak, R., Draheim, A. A., & Engle, R. W. (2022). The role of attention control
in complex real-world tasks. Psychonomic Bulletin & Review, 29. https://doi.org/10.
3758/s13423-021-02052-2

Draheim, C., Tsukaharsa, |. S., Martin, ]. D., Mashburn, C. A,, & Engle, R. W. (2021). A tool-
box approach to improving the measurement of attention control. Journal of Experi-
mental Psychology: General, 150(2), 242-275. https://doi.org/10.1037 /xge0000783

Duncan, G. ], Magnuson, K., & Votruba-Drzal, E. (2017). Moving beyond correlations in
assessing the consequences of poverty. Annual Review of Psychology, 68(1), 413-434.
https://doi.org/10.1146/annurev-psych-010416-044224

Duncan, G. |., Ziol-Guest, K. M., & Kalil, A. (2010). Early-childhood poverty and adult
attainment, behavior, and health. Child Development, 81(1), 306-325. https://doi.org/
10.1111/j.1467-8624.2009.01396.x

Duquennois, C. (2022). Fictional money, real costs: Impacts of financial salience on dis-
advantaged students. American Economic Review, 112(3), 798-826. https://doi.org/
10.1257/aer.20201661

Durlak, J. A, Dymnicki, A. B, Taylor, R. D., Weissberg, R. P, & Schellinger, K. B. (2011).
The impact of enhancing students’ social and emotional learning: A meta-analysis of
school-based universal interventions. Child Development, 82(1), 405-432. https://doi.
org/10.1111/j.1467-8624.2010.01564.x

Duval, E. R, Garfinkel, S. N., Swain, ]. E., Evans, G. W,, Blackburn, E. K., Angstadt, M.,
Sripada, C. S., & Liberzon, I. (2017). Childhood poverty is associated with altered hip-
pocampal function and visuospatial memory in adulthood. Developmental Cognitive
Neuroscience, 23, 39-44. https://doi.org/10.1016/j.dcn.2016.11.006

|64


https://doi.org/10.1177/1745691620904771
https://doi.org/10.1016/0001-6918(69)90065-1
https://doi.org/10.1037/bul0000192
https://doi.org/10.1037/bul0000192
https://doi.org/10.3758/s13423-021-02052-2
https://doi.org/10.3758/s13423-021-02052-2
https://doi.org/10.1037/xge0000783
https://doi.org/10.1146/annurev-psych-010416-044224
https://doi.org/10.1111/j.1467-8624.2009.01396.x
https://doi.org/10.1111/j.1467-8624.2009.01396.x
https://doi.org/10.1257/aer.20201661
https://doi.org/10.1257/aer.20201661
https://doi.org/10.1111/j.1467-8624.2010.01564.x
https://doi.org/10.1111/j.1467-8624.2010.01564.x
https://doi.org/10.1016/j.dcn.2016.11.006

Bibliography

Ecker, U. K. H., Lewandowsky, S., Oberauer,; K., & Chee, A. E. H. (2010). The components
of working memory updating: An experimental decomposition and individual differ-
ences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(1),
170-189. https://doi.org/10.1037 /20017891

Ellis, B.]., Abrams, L., Masten, A., Sternberg, R., Tottenham, N., & Frankenhuis, W. (2022).
Hidden talents in harsh environments. Development and Psychopathology, 34, 95-113.
https://doi.org/10.1017/S0954579420000887

Ellis, B. ]., Bianchi, ]., Griskevicius, V., & Frankenhuis, W. E. (2017). Beyond risk and pro-
tective factors: An adaptation-based approach to resilience. Perspectives on Psycholog-
ical Science, 12(4), 561-587. https://doi.org/10.1177/1745691617693054

Ellis, B. J., Figueredo, A. ]., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental di-
mensions of environmental risk. Human Nature, 20(2), 204-268. https://doi.org/10.
1007/s12110-009-9063-7

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of
atargetletter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149. https://
doi.org/10.3758/BF03203267

Eriksen, C. W, & St. James, ]. D. (1986). Visual attention within and around the field of fo-
cal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225-240. https://
doi.org/10.3758/BF03211502

Evans, G. W,, & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult
working memory. Proceedings of the National Academy of Sciences, 106(16), 6545-
6549. https://doi.org/10.1073/pnas.0811910106

Farah, M. ],, Shera, D. M., Savage, |]. H., Betancourt, L., Giannetta, ]. M., Brodsky, N.
L., Malmud, E. K., & Hurt, H. (2006). Childhood poverty: Specific associations with
neurocognitive development. Brain Research, 1110(1), 166-174. https://doi.org/10.
1016/j.brainres.2006.06.072

Fields, A., Bloom, P. A,, VanTieghem, M., Harmon, C., Choy, T., Camacho, N. L., Gibson, L.,
Umbach, R, Heleniak, C., & Tottenham, N. (2021). Adaptation in the face of adversity:
Decrements and enhancements in children’s cognitive control behavior following early
caregiving instability. Developmental Science, 24(6), e13133. https://doi.org/10.1111/
desc.13133

Forstmann, B. U,, Ratcliff, R., & Wagenmakers, E.-]. (2016). Sequential sampling mod-
els in cognitive neuroscience: Advantages, applications, and extensions. Annual Re-

165


https://doi.org/10.1037/a0017891
https://doi.org/10.1017/S0954579420000887
https://doi.org/10.1177/1745691617693054
https://doi.org/10.1007/s12110-009-9063-7
https://doi.org/10.1007/s12110-009-9063-7
https://doi.org/10.3758/BF03203267
https://doi.org/10.3758/BF03203267
https://doi.org/10.3758/BF03211502
https://doi.org/10.3758/BF03211502
https://doi.org/10.1073/pnas.0811910106
https://doi.org/10.1016/j.brainres.2006.06.072
https://doi.org/10.1016/j.brainres.2006.06.072
https://doi.org/10.1111/desc.13133
https://doi.org/10.1111/desc.13133

Bibliography

view of Psychology, 67(1), 641-666. https://doi.org/10.1146 /annurev-psych-122414-
033645

Francis, E. R,, Tsaligopoulou, A., Stock, S. E., Pingault, ]., & Baldwin, ]. R. (2023). Subjec-
tive and objective experiences of childhood adversity: A meta-analysis of their agree-
ment and relationships with psychopathology. Journal of Child Psychology and Psychi-
atry, and Allied Disciplines, 64(8), 1185-1199. https://doi.org/10.1111/jcpp.13803

Frankenhuis, W. E., & Bijlstra, G. (2018). Does exposure to hostile environments predict
enhanced emotion detection? Collabra: Psychology, 4(1), 18. https://doi.org/10.1525/
collabra.127

Frankenhuis, W. E., Panchanathan, K., & Nettle, D. (2016). Cognition in harsh and un-
predictable environments. Current Opinion in Psychology, 7, 76-80. https://doi.org/10.
1016/j.copsyc.2015.08.011

Frankenhuis, W. E,, Vries, S. A. de, Bianchi, ]., & Ellis, B.]. (2020). Hidden talents in harsh
conditions? A preregistered study of memory and reasoning about social dominance.
Developmental Science, 23(4), e12835. https://doi.org/10.1111/desc.12835

Frankenhuis, W. E., & Weerth, C. de. (2013). Does early-life exposure to stress shape or
impair cognition? Current Directions in Psychological Science, 22(5), 407-412. https://
doi.org/10.1177/0963721413484324

Frankenhuis, W. E,, Young, E. S., & Ellis, B. ]. (2020). The hidden talents approach: The-
oretical and methodological challenges. Trends in Cognitive Sciences, 24(7), 569-581.
https://doi.org/10.1016/j.tics.2020.03.007

Friedman, N. P, Miyake, A., Young, S. E., DeFries, |. C., Corley, R. P,, & Hewitt, . K. (2008).
Individual differences in executive functions are almost entirely genetic in origin. Jour-
nal of Experimental Psychology. General, 137(2), 201-225. https://doi.org/10.1037/
0096-3445.137.2.201

Frischkorn, G. T, Bastian, C. C. von, Souza, A. S., & Oberauer, K. (2022). Individual differ-
ences in updating are not related to reasoning ability and working memory capacity.
Journal of Experimental Psychology: General, 151(6), 1341-1357. https://doi.org/10.
1037 /xge0001141

Frischkorn, G. T, Schubert, A.-L., & Hagemann, D. (2019). Processing speed, working
memory, and executive functions: Independent or inter-related predictors of general
intelligence. Intelligence, 75, 95-110. https://doi.org/10.1016/j.intell.2019.05.003

166


https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1111/jcpp.13803
https://doi.org/10.1525/collabra.127
https://doi.org/10.1525/collabra.127
https://doi.org/10.1016/j.copsyc.2015.08.011
https://doi.org/10.1016/j.copsyc.2015.08.011
https://doi.org/10.1111/desc.12835
https://doi.org/10.1177/0963721413484324
https://doi.org/10.1177/0963721413484324
https://doi.org/10.1016/j.tics.2020.03.007
https://doi.org/10.1037/0096-3445.137.2.201
https://doi.org/10.1037/0096-3445.137.2.201
https://doi.org/10.1037/xge0001141
https://doi.org/10.1037/xge0001141
https://doi.org/10.1016/j.intell.2019.05.003

Bibliography

Frost, A., Moussaoui, S., Kaur, J., Aziz, S., Fukuda, K., & Niemeier, M. (2021). Is the n-back
task a measure of unstructured working memory capacity? Towards understanding its
connection to other working memory tasks. Acta Psychologica, 219, 103398. https://
doi.org/10.1016/j.actpsy.2021.103398

Fuhrmann, D., Simpson-Kent, I. L., Bathelt, ]., The CALM Team, & Kievit, R. A. (2020). A
hierarchical watershed model of fluid intelligence in childhood and adolescence. Cere-
bral Cortex, 30(1), 339-352. https://doi.org/10.1093/cercor/bhz091

Ganschow, B., Zebel, S., Van Der Schalk, ], Hershfield, H. E., & Van Gelder, J.-L. (2023).
Adolescent stressful life events predict future self- connectedness in adulthood. The
Journal of Early Adolescence, 44(9). https://doi.org/10.1177/02724316231216380

Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R. Z., Heeringa, S., Jernigan,
T, Potter, A.,, Thompson, W,, & Zahs, D. (2018). Recruiting the ABCD sample: Design con-
siderations and procedures. Developmental Cognitive Neuroscience, 32, 16-22. https://
doi.org/10.1016/j.dcn.2018.04.004

Gellci, K., Marusak, H. A, Peters, C., Elrahal, F, Iadipaolo, A. S., & Rabinak, C. A. (2019).
Community and household-level socioeconomic disadvantage and functional organi-
zation of the salience and emotion network in children and adolescents. NeuroImage,
184, 729-740. https://doi.org/10.1016/j.neuroimage.2018.09.077

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 457-472. https://doi.org/10.1214/ss/1177011136

Giuliano, R.]., Karns, C. M,, Roos, L. E., Bell, T. A,, Petersen, S., Skowron, E. A., Neville, H.
J., & Pakulak, E. (2018). Effects of early adversity on neural mechanisms of distractor
suppression are mediated by sympathetic nervous system activity in preschool-aged
children. Developmental Psychology, 54(9), 1674-1686. https://doi.org/10.1037/dev
0000499

Glynn, L. M., Stern, H. S,, Howland, M. A,, Risbrough, V. B., Baker, D. G., Nievergelt, C.
M., Baram, T. Z., & Davis, E. P. (2019). Measuring novel antecedents of mental illness:
The Questionnaire of Unpredictability in Childhood. Neuropsychopharmacology, 44(5),
876-882. https://doi.org/10.1038/s41386-018-0280-9

Goltermann, J., Meinert, S., Hillsmann, C.,, Dohm, K., Grotegerd, D., Redlich, R., Waltem-
ate, L., Lemke, H., Thiel, K., Mehler, D. M. A,, Enneking, V., Borgers, T, Repple, ]., Gruber,
M., Winter, N., Hahn, T, Brosch, K., Meller, T, Ringwald, K. G., ... Dannlowski, U. (2023).
Temporal stability and state-dependence of retrospective self-reports of childhood

167


https://doi.org/10.1016/j.actpsy.2021.103398
https://doi.org/10.1016/j.actpsy.2021.103398
https://doi.org/10.1093/cercor/bhz091
https://doi.org/10.1177/02724316231216380
https://doi.org/10.1016/j.dcn.2018.04.004
https://doi.org/10.1016/j.dcn.2018.04.004
https://doi.org/10.1016/j.neuroimage.2018.09.077
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1037/dev0000499
https://doi.org/10.1037/dev0000499
https://doi.org/10.1038/s41386-018-0280-9

Bibliography

maltreatment in healthy and depressed adults. Psychological Assessment, 35(1), 12-22.
https://doi.org/10.1037/pas0001175

Goodman, J. B, Freeman, E. E., & Chalmers, K. A. (2019). The relationship between early
life stress and working memory in adulthood: A systematic review and meta-analysis.
Memory, 27(6), 868-880. https://doi.org/10.1080/09658211.2018.1561897

Grange, J. A. (2016). Flankr: An R package implementing computational models of at-
tentional selectivity. Behavior Research Methods, 48(2), 528-541. https://doi.org/10.
3758/s13428-015-0615-y

Grange, J. A., & Rydon-Grange, M. (2022). Computational modelling of attentional se-
lectivity in depression reveals perceptual deficits. Psychological Medicine, 52(5), 904-
913. https://doi.org/10.1017/S0033291720002652

Gruszka, A., & Necka, E. (2017). Limitations of working memory capacity: The cognitive
and social consequences. European Management Journal, 35(6), 776-784. https://doi.
org/10.1016/j.emj.2017.07.001

Guest, 0., & Martin, A. E. (2021). How computational modeling can force theory building
in psychological science. Perspectives on Psychological Science, 16(4), 789-802. https://
doi.org/10.1177/1745691620970585

Guo, Z., Zou, |, He, C.,, Tan, X,, Chen, C., & Feng, G. (2020). The Importance of cognitive
and mental factors on prediction of job performance in chinese high-speed railway
dispatchers. Journal of Advanced Transportation, 2020, e7153972. https://doi.org/10.
1155/2020/7153972

Hackman, D. A, Farah, M. ]., & Meaney, M. ]. (2010). Socioeconomic status and the brain:
Mechanistic insights from human and animal research. Nature Reviews Neuroscience,
11(9), 651-659. https://doi.org/10.1038/nrn2897

Hakim, N., Simons, D. ]., Zhao, H., & Wan, X. (2017). Do Easterners and Westerners dif-
fer in visual cognition? A preregistered examination of three visual cognition tasks.
Social Psychological and Personality Science, 8(2), 142-152. https://doi.org/10.1177/
1948550616667613

Hanson, ]. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, ]. C., Davidson,
R.].,, & Pollak, S. D. (2012). Structural variations in prefrontal cortex mediate the rela-
tionship between early childhood stress and spatial working memory. Journal of Neu-
roscience, 32(23), 7917-7925. https://doi.org/10.1523 /J]NEUROSCI.0307-12.2012

168


https://doi.org/10.1037/pas0001175
https://doi.org/10.1080/09658211.2018.1561897
https://doi.org/10.3758/s13428-015-0615-y
https://doi.org/10.3758/s13428-015-0615-y
https://doi.org/10.1017/S0033291720002652
https://doi.org/10.1016/j.emj.2017.07.001
https://doi.org/10.1016/j.emj.2017.07.001
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1155/2020/7153972
https://doi.org/10.1155/2020/7153972
https://doi.org/10.1038/nrn2897
https://doi.org/10.1177/1948550616667613
https://doi.org/10.1177/1948550616667613
https://doi.org/10.1523/JNEUROSCI.0307-12.2012

Bibliography

Hao, Y, & Hu, L. (2024). Lower childhood socioeconomic status Is associated with
greater neural responses to ambient auditory changes in adulthood. Journal of Cogni-
tive Neuroscience, 36(6), 979-996. https://doi.org/10.1162/jocn_a_02151

Harms, C., & Lakens, D. (2018). Making 'null effects’ informative: Statistical techniques
and inferential frameworks. Journal of Clinical and Translational Research, 3(Suppl 2),
382-393. https://doi.org/10.18053/jctres.03.2017S2.007

Hazel, N. A,, Hammen, C., Brennan, P. A,, & Najman, J. (2008). Early childhood adversity
and adolescent depression: The mediating role of continued stress. Psychological Med-
icine, 38(4), 581-589. https://doi.org/10.1017/50033291708002857

Hedge, C., Powell, G., Bompas, A., & Sumner, P. (2022). Strategy and processing speed
eclipse individual differences in control ability in conflict tasks. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 48(10), 1448-1469. https://doi.org/10.
1037/xlm0001028

Hedge, C., Powel], G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive
tasks do not produce reliable individual differences. Behavior Research Methods, 50(3),
1166-1186. https://doi.org/10.3758/s13428-017-0935-1

Heeringa, S. G., West, B. T,, & Berglund, P. A. (2010). Applied survey data analysis. Chap-
man & Hall.

Hilger, K., Ekman, M., Fiebach, C. ]., & Basten, U. (2017). Efficient hubs in the intelligent
brain: Nodal efficiency of hub regions in the salience network is associated with gen-
eral intelligence. Intelligence, 60, 10-25. https://doi.org/10.1016/j.intell.2016.11.001

Hofmarcher, T. (2021). The effect of education on poverty: A European perspective. Eco-
nomics of Education Review, 83, 102124. https://doi.org/10.1016/j.econedurev.2021.
102124

Hoijtink, H., Mulder, |., Lissa, C. van, & Gu, X. (2019). A tutorial on testing hypotheses us-
ing the Bayes factor. Psychological Methods, 24(5), 539-556. https://doi.org/10.1037/
met0000201

Hostinar, C. E., & Gunnar, M. R. (2013). The developmental effects of early life stress:
An overview of current theoretical frameworks. Current Directions in Psychological Sci-
ence, 22(5), 400-406. https://doi.org/10.1177/0963721413488889

Howard, S. J., Cook, C. ]., Everts, L., Melhuish, E., Scerif, G., Norris, S., Twine, R., Kahn, K,,
& Draper, C. E. (2020). Challenging socioeconomic status: A cross-cultural comparison

169


https://doi.org/10.1162/jocn_a_02151
https://doi.org/10.18053/jctres.03.2017S2.007
https://doi.org/10.1017/S0033291708002857
https://doi.org/10.1037/xlm0001028
https://doi.org/10.1037/xlm0001028
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1016/j.intell.2016.11.001
https://doi.org/10.1016/j.econedurev.2021.102124
https://doi.org/10.1016/j.econedurev.2021.102124
https://doi.org/10.1037/met0000201
https://doi.org/10.1037/met0000201
https://doi.org/10.1177/0963721413488889

Bibliography

of early executive function. Developmental Science, 23(1), e12854. https://doi.org/10.
1111/desc.12854

Huy, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
analysis: Conventional criteria versus new alternatives. Structural Equation Modeling,
6, 1-55. https://doi.org/10.1080/10705519909540118

Hiibner, R,, Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of se-
lective attention. Psychological Review, 117(3), 759-784. https://doi.org/10.1037/
20019471

Huizinga, M., Burack, ]. A., & Van der Molen, M. W. (2010). Age-related change in shifting
attention between global and local levels of hierarchical stimuli. Journal of Cognition
and Development, 11(4), 408-436. https://doi.org/10.1080/15248371003700031

Johnson, D. ]., Hopwood, C. ]., Cesario, ]., & Pleskac, T.]. (2017). Advancing research on
cognitive processes in social and personality psychology: A hierarchical Drift Diffusion
Model primer. Social Psychological and Personality Science, 8(4), 413-423. https://doi.
org/10.1177/1948550617703174

Johnson, D., Policellj, J., Li, M., Dharamsi, A., Hu, Q., Sheridan, M. A., McLaughlin, K. A., &
Wade, M. (2021). Associations of early-life threat and deprivation with executive func-
tioning in childhood and adolescence: A systematic review and meta-analysis. JAMA
Pediatrics, 175(11), e212511. https://doi.org/10.1001 /jamapediatrics.2021.2511

Kane, M. ], Conway, A. R. A, Miura, T. K,, & Colflesh, G. ]. H. (2007). Working memory,
attention control, and the n-back task: A question of construct validity. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 33(3), 615-622. https://doi.
org/10.1037/0278-7393.33.3.615

Karr, J., Areshenkoff, C., Rast, P, Hofer, S., Iverson, G., & Garcia-Barrera, M. (2018). The
unity and diversity of executive functions: A systematic review and re-analysis of latent
variable studies. Psychological Bulletin, 144. https://doi.org/10.1037 /bul0000160

Key, N., Prager, D., & Burns, C. (2017). Farm household income volatility: An analysis
using panel data from a national survey. US Department of Agriculture, Economic Re-
search Service. https://www.ers.usda.gov/publications/pub-details/?pubid=82563

Kievit, R. A., Davis, S. W,, Griffiths, ]., Correia, M. M., Cam-CAN, & Henson, R. N. (2016). A

watershed model of individual differences in fluid intelligence. Neuropsychologia, 91,
186-198. https://doi.org/10.1016/j.neuropsychologia.2016.08.008

170


https://doi.org/10.1111/desc.12854
https://doi.org/10.1111/desc.12854
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1037/a0019471
https://doi.org/10.1037/a0019471
https://doi.org/10.1080/15248371003700031
https://doi.org/10.1177/1948550617703174
https://doi.org/10.1177/1948550617703174
https://doi.org/10.1001/jamapediatrics.2021.2511
https://doi.org/10.1037/0278-7393.33.3.615
https://doi.org/10.1037/0278-7393.33.3.615
https://doi.org/10.1037/bul0000160
https://www.ers.usda.gov/publications/pub-details/?pubid=82563
https://doi.org/10.1016/j.neuropsychologia.2016.08.008

Bibliography

Kievit, R. A., McCormick, E. M., Fuhrmann, D., Deserno, M. K., & Orben, A. (2022). Us-
ing large, publicly available data sets to study adolescent development: Opportunities
and challenges. Current Opinion in Psychology, 44, 303-308. https://doi.org/10.1016/
j.copsyc.2021.10.003

Klein, K., & Boals, A. (2001). The relationship of life event stress and working memory
capacity. Applied Cognitive Psychology, 15(5), 565-579. https://doi.org/10.1002/acp.
727

Kovacs, K., & Conway, A. R. A. (2016). Process Overlap Theory: A unified account of the
general factor of intelligence. Psychological Inquiry, 27(3), 151-177. https://doi.org/
10.1080/1047840X.2016.1153946

Kovacs, K., & Conway, A. R. A. (2019). A unified cognitive/differential approach to hu-
man intelligence: Implications for 1Q testing. Journal of Applied Research in Memory and
Cognition, 8(3), 255-272. https://doi.org/10.1016/j.jarmac.2019.05.003

Kretzschmar, A., & Gignac, G. E. (2019). At what sample size do latent variable correla-
tions stabilize? Journal of Research in Personality, 80, 17-22. https://doi.org/10.1016/
jjrp-2019.03.007

Kibel, S. L., Deitzer, ]J. R,, Frankenhuis, W. E., Ribeaud, D., Eisner, M. P,, & Gelder, ].-L.
van. (2023). The shortsighted victim: Short-term mindsets mediate the link between
victimization and later offending. Journal of Criminal Justice, 86, 102062. https://doi.
org/10.1016/j.jcrimjus.2023.102062

Kucina, T.,, Wells, L., Lewis, 1., Salas, K. de, Kohl, A., Palmer, M. A., Sauer, |. D., Matzke, D.,
Aidman, E., & Heathcote, A. (2023). Calibration of cognitive tests to address the relia-
bility paradox for decision-conflict tasks. Nature Communications, 14(1), 2234. https://
doi.org/10.1038/s41467-023-37777-2

Lacey, R. E., Howe, L. D., Kelly-Irving, M., Bartley, M., & Kelly, Y. (2022). The clustering of
adverse childhood experiences in the Avon longitudinal study of parents and children:
Are gender and poverty important? Journal of Interpersonal Violence, 37(5-6), 2218-
2241. https://doi.org/10.1177/0886260520935096

Lakens, D. (2024). When and how to deviate From a preregistration. Collabra: Psychol-
ogy, 10(1), 117094. https://doi.org/10.1525/collabra.117094

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological
research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2),
259-269. https://doi.org/10.1177/2515245918770963

|71


https://doi.org/10.1016/j.copsyc.2021.10.003
https://doi.org/10.1016/j.copsyc.2021.10.003
https://doi.org/10.1002/acp.727
https://doi.org/10.1002/acp.727
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1016/j.jarmac.2019.05.003
https://doi.org/10.1016/j.jrp.2019.03.007
https://doi.org/10.1016/j.jrp.2019.03.007
https://doi.org/10.1016/j.jcrimjus.2023.102062
https://doi.org/10.1016/j.jcrimjus.2023.102062
https://doi.org/10.1038/s41467-023-37777-2
https://doi.org/10.1038/s41467-023-37777-2
https://doi.org/10.1177/0886260520935096
https://doi.org/10.1525/collabra.117094
https://doi.org/10.1177/2515245918770963

Bibliography

LeDoux, ]. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23(1),
155-184. https://doi.org/10.1146/annurev.neuro.23.1.155

Lee, H. ], Smith, D. M., Hauenstein, C., Dworetsky, A., Kraus, B. T,, Dorn, M., Nee, D., &
Gratton, C. (2023). Precise individual measures of inhibitory control. OSF. https://doi.
org/10.31234/osf.io/rj2bu

Lerche, V, Krause, M. von, Voss, A., Frischkorn, G. T, Schubert, A.-L., & Hagemann, D.
(2020). Diffusion modeling and intelligence: Drift rates show both domain-general and
domain-specific relations with intelligence. Journal of Experimental Psychology: Gen-
eral, 149(12), 2207-2249. https://doi.org/10.1037 /xge0000774

Lerche, V, Voss, A., & Nagler, M. (2017). How many trials are required for parameter es-
timation in diffusion modeling? A comparison of different optimization criteria. Behav-
ior Research Methods, 49(2), 513-537. https://doi.org/10.3758/s13428-016-0740-2

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: Principles
and practice. SAGE publications.

Li, Z., Liu, S., Hartman, S., & Belsky, ]. (2018). Interactive effects of early-life income
harshness and unpredictability on children’s socioemotional and academic function-
ing in kindergarten and adolescence. Developmental Psychology, 54(11), 2101-2112.
https://doi.org/10.1037/dev0000601

Liu, S., Zalewski, M., Lengua, L., Gunnar, M. R, Giuliani, N., & Fisher,; P. A. (2022). Material
hardship level and unpredictability in relation to U.S. Households’ family interactions
and emotional well-being: Insights from the COVID-19 pandemic. Social Science & Med-
icine, 307, 115173. https://doi.org/10.1016/j.socscimed.2022.115173

Loffler, C., Frischkorn, G. T, Hagemann, D., Sadus, K., & Schubert, A.-L. (2024). The com-
mon factor of executive functions measures nothing but speed of information uptake.
Psychological Research, 88, 1092-1114. https://doi.org/10.1007 /s00426-023-01924-
7

Luciana, M., Bjork, J. M., Nagel, B. ]., Barch, D. M., Gonzalez, R., Nixon, S. ]., & Banich,
M. T. (2018). Adolescent neurocognitive development and impacts of substance use:
Overview of the adolescent brain cognitive development (ABCD) baseline neurocog-
nition battery. Developmental Cognitive Neuroscience, 32, 67-79. https://doi.org/10.
1016/j.dcn.2018.02.006

Lurie, L. A, Rosen, M. L., Weissman, D. G., Machlin, L., Lengua, L., Sheridan, M. A, &
McLaughlin, K. A. (2024). Cognitive stimulation as a mechanism linking socioeconomic

172


https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.31234/osf.io/rj2bu
https://doi.org/10.31234/osf.io/rj2bu
https://doi.org/10.1037/xge0000774
https://doi.org/10.3758/s13428-016-0740-2
https://doi.org/10.1037/dev0000601
https://doi.org/10.1016/j.socscimed.2022.115173
https://doi.org/10.1007/s00426-023-01924-7
https://doi.org/10.1007/s00426-023-01924-7
https://doi.org/10.1016/j.dcn.2018.02.006
https://doi.org/10.1016/j.dcn.2018.02.006

Bibliography

status and neural function supporting working memory: A longitudinal fMRI study.
Cerebral Cortex, 34(2), bhad545. https://doi.org/10.1093 /cercor/bhad545

Marteau, T. M., & Bekker, H. (1992). The development of a six-item short-form of the
state scale of the Spielberger State-Trait Anxiety Inventory (STAI). The British Journal
of Clinical Psychology, 31(3), 301-306. https://doi.org/10.1111/j.2044-8260.1992.tb
00997 x

Mashburn, C. A., Barnett, M. K., & Engle, R. W. (2023). Processing speed and executive
attention as causes of intelligence. Psychological Review, 131(3), 664-694. https://doi.
org/10.1037 /rev0000439

Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American
Psychologist, 56(3), 227-238. https://doi.org/10.1037/0003-066X.56.3.227

Matheny, A. P, Wachs, T. D., Ludwig, J. L., & Phillips, K. (1995). Bringing order out of
chaos: Psychometric characteristics of the Confusion, Hubbub, and Order Scale. Journal
of Applied Developmental Psychology, 16(3), 429-444. https://doi.org/10.1016/0193-
3973(95)90028-4

McCarthy-Jones, S., Oestreich, L. K. L., Lyall, A. E., Kikinis, Z., Newell, D. T, Savadjiev, P,
Shenton, M. E,, Kubicki, M., Bank, A. S. R,, Pasternak, 0., & Whitford, T. J. (2018). Child-
hood adversity associated with white matter alteration in the Corpus Callosum, Corona
Radiata, and Uncinate Fasciculus of psychiatrically healthy adults. Brain Imaging and
Behavior, 12(2), 449. https://doi.org/10.1007/s11682-017-9703-1

McKone, E., Aimola Davies, A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne,
T, & Platow, M. ]. (2010). Asia has the global advantage: Race and visual attention. Vi-
sion Research, 50(16), 1540-1549. https://doi.org/10.1016/j.visres.2010.05.010

McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional ap-
proach to childhood adversity. Current Directions in Psychological Science, 25(4), 239-
245. https://doi.org/10.1177/0963721416655883

McLaughlin, K. A., Sheridan, M. A., Humphreys, K. L., Belsky, ., & Ellis, B.]. (2021). The
value of dimensional models of early experience: Thinking clearly about concepts and
categories. Perspectives on Psychological Science, 16(6), 1463-1472. https://doi.org/
10.1177/1745691621992346

McLaughlin, K. A., Weissman, D., & Bitran, D. (2019). Childhood adversity and neural
development: A systematic review. Annual Review of Developmental Psychology, 1,277~
312. https://doi.org/10.1146 /annurev-devpsych-121318-084950

|73


https://doi.org/10.1093/cercor/bhad545
https://doi.org/10.1111/j.2044-8260.1992.tb00997.x
https://doi.org/10.1111/j.2044-8260.1992.tb00997.x
https://doi.org/10.1037/rev0000439
https://doi.org/10.1037/rev0000439
https://doi.org/10.1037/0003-066X.56.3.227
https://doi.org/10.1016/0193-3973(95)90028-4
https://doi.org/10.1016/0193-3973(95)90028-4
https://doi.org/10.1007/s11682-017-9703-1
https://doi.org/10.1016/j.visres.2010.05.010
https://doi.org/10.1177/0963721416655883
https://doi.org/10.1177/1745691621992346
https://doi.org/10.1177/1745691621992346
https://doi.org/10.1146/annurev-devpsych-121318-084950

Bibliography

Mejia, A. F, Nebel, M. B,, Barber; A. D., Choe, A. S., Pekar, |. ]., Caffo, B. S., & Lindquist, M. A.
(2018). Improved estimation of subject-level functional connectivity using full and par-
tial correlation with empirical Bayes shrinkage. Neurolmage, 172, 478-491. https://
doi.org/10.1016/j.neuroimage.2018.01.029

Merkt, ]J., Singmann, H., Bodenburg, S., Goossens-Merkt, H., Kappes, A., Wendt, M., &
Gawrilow, C. (2013). Flanker performance in female college students with ADHD: A dif-
fusion model analysis. ADHD Attention Deficit and Hyperactivity Disorders, 5(4), 321-
341. https://doi.org/10.1007/s12402-013-0110-1

Merriam-Webster. (2024a). Ability. https://www.merriam-webster.com/dictionary/
ability

Merriam-Webster. (2024b). Performance. https://www.merriam-webster.com/
dictionary/performance

Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic inequality and the
developing brain: Spotlight on language and executive function. Child Development Per-
spectives, 13(1), 15-20. https://doi.org/10.1111/cdep.12305

Mezzacappa, E. (2004). Alerting, orienting, and executive attention: Developmental
properties and sociodemographic correlates in an epidemiological sample of young, ur-
ban children. Child Development, 75(5), 1373-1386. https://doi.org/10.1111/j.1467-
8624.2004.00746.x

Miller, J., & Ulrich, R. (2013). Mental chronometry and individual differences: Modeling
reliabilities and correlations of reaction time means and effect sizes. Psychonomic Bul-
letin & Review, 20(5), 819-858. https://doi.org/10.3758/s13423-013-0404-5

Miller-Cotto, D., Smith, L. V., Wang, A. H., & Ribner, A. D. (2022). Changing the conversa-
tion: A culturally responsive perspective on executive functions, minoritized children
and their families. Infant and Child Development, 31(1), e2286. https://doi.org/10.
1002 /icd.2286

Mittal, C., Griskevicius, V., Simpson, ]. A,, Sung, S., & Young, E. S. (2015). Cognitive adap-
tations to stressful environments: When childhood adversity enhances adult executive
function. Journal of Personality and Social Psychology, 109(4), 604-621. https://doi.
org/10.1037 /pspi0000028

Miyake, A., Friedman, N. P, Emerson, M. ]., Witzki, A. H., Howerter, A., & Wager, T. D.
(2000). The unity and diversity of executive functions and their contributions to com-

|74


https://doi.org/10.1016/j.neuroimage.2018.01.029
https://doi.org/10.1016/j.neuroimage.2018.01.029
https://doi.org/10.1007/s12402-013-0110-1
https://www.merriam-webster.com/dictionary/ability
https://www.merriam-webster.com/dictionary/ability
https://www.merriam-webster.com/dictionary/performance
https://www.merriam-webster.com/dictionary/performance
https://doi.org/10.1111/cdep.12305
https://doi.org/10.1111/j.1467-8624.2004.00746.x
https://doi.org/10.1111/j.1467-8624.2004.00746.x
https://doi.org/10.3758/s13423-013-0404-5
https://doi.org/10.1002/icd.2286
https://doi.org/10.1002/icd.2286
https://doi.org/10.1037/pspi0000028
https://doi.org/10.1037/pspi0000028

Bibliography

plex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
https://doi.org/10.1006/cogp.1999.0734

Moos, R. H. (1994). Family Environment Scale Manual: Development, Applications, Re-
search. Consulting Psychologists Press.

Muskens, M., Frankenhuis, W. E., & Borghans, L. (2019). Math items about real-world
content lower test-scores of students from families with low socioeconomic status. Npj
Science of Learning, 9(1), 19. https://doi.org/10.1038/s41539-024-00228-8

Mutter, B., Alcorn, M., & Welsh, M. (2006). Theory of mind and executive function:
Working-memory capacity and inhibitory control as predictors of false-belief task per-
formance. Perceptual and Motor Skills, 102, 819-835. https://doi.org/10.2466/PMS.
102.3.819-835

Navon, D. (1977). Forest before trees: The precedence of global features in visual
perception. Cognitive Psychology, 9(3), 353-383. https://doi.org/10.1016/0010-0285
(77)90012-3

Nelson, C. A, Bhutta, Z. A., Burke Harris, N, Danese, A., & Samara, M. (2020). Adversity
in childhood is linked to mental and physical health throughout life. BMJ, 371, m3048.
https://doi.org/10.1136/bmj.m3048

Nelson, C. A., & Gabard-Durnam, L. ]. (2020). Early Adversity and Critical Periods: Neu-
rodevelopmental Consequences of Violating the Expectable Environment. Trends in
Neurosciences, 43(3), 133-143. https://doi.org/10.1016/j.tins.2020.01.002

Niebaum, J. C., & Munakata, Y. (2023). Why doesn’t executive function training improve
academic achievement? Rethinking individual differences, relevance, and engagement
from a contextual framework. Journal of Cognition and Development, 24(2), 241-259.
https://doi.org/10.1080/15248372.2022.2160723

Ning, K., Gondek, D., Pereira, S. M. P, & Lacey, R. E. (2023). Mediating mechanisms of the
relationship between exposure to deprivation and threat during childhood and adoles-
cent psychopathology: Evidence from the Millennium Cohort Study. European Child &
Adolescent Psychiatry, 33. https://doi.org/10.1007 /s00787-023-02289-3

Nivison, M. D., Vandell, D. L., Booth-LaForce, C., & Roisman, G. I. (2021). Convergent and
discriminant validity of retrospective assessments of the quality of childhood parent-
ing: Prospective evidence from infancy to age 26 years. Psychological Science, 32(5),
721-734. https://doi.org/10.1177/0956797620975775

|75


https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1038/s41539-024-00228-8
https://doi.org/10.2466/PMS.102.3.819-835
https://doi.org/10.2466/PMS.102.3.819-835
https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1136/bmj.m3048
https://doi.org/10.1016/j.tins.2020.01.002
https://doi.org/10.1080/15248372.2022.2160723
https://doi.org/10.1007/s00787-023-02289-3
https://doi.org/10.1177/0956797620975775

Bibliography

Nketia, ]., Al Sager, A., Dajani, R, Placido, D., & Amso, D. (2024). Executive functions in
Jordanian children: What can the Hearts and Flowers Task tell us about development in
anon-Western context. Journal of Cognition and Development, 25(2), 180-200. https://
doi.org/10.1080/15248372.2023.2248698

Noble, K. G., Hart, E.R., & Sperber, J. F. (2021). Socioeconomic disparities and neuroplas-
ticity: Moving toward adaptation, intersectionality, and inclusion. American Psycholo-
gist, 76(9), 1486-1495. https://doi.org/10.1037 /amp0000934

Noble, K. G., McCandliss, B. D., & Farah, M. ]. (2007). Socioeconomic gradients predict
individual differences in neurocognitive abilities. Developmental Science, 10(4), 464-
480. https://doi.org/10.1111/j.1467-7687.2007.00600.x

Noble, K. G., Norman, M. F, & Farah, M. J. (2005). Neurocognitive correlates of socioe-
conomic status in kindergarten children. Developmental Science, 8(1), 74-87. https://
doi.org/10.1111/j.1467-7687.2005.00394.x

Nweze, T., Nwoke, M. B., Nwufo, J. L., Aniekwu, R. I, & Lange, F. (2021). Working for the
future: Parentally deprived Nigerian children have enhanced working memory ability.
Journal of Child Psychology and Psychiatry, 62(3), 280-288. https://doi.org/10.1111/
jcpp-13241

Oberauer, K. (2005). Binding and inhibition in working memory: Individual and age dif-
ferences in short-term recognition. Journal of Experimental Psychology: General, 134(3),
368-387. https://doi.org/10.1037/0096-3445.134.3.368

Oberauer,; K. (2009). Design for a working memory. In Psychology of Learning and Mo-
tivation (Vol. 51, pp. 45-100). Elsevier.

Oberauer, K., & Lewandowsky, S. (2019). Simple measurement models for complex
working-memory tasks. Psychological Review, 126(6), 880-932. https://doi.org/10.
1037 /rev0000159

Oberauer, K., Lewandowsky, S., Awh, E., Brown, G. D. A., Conway, A., Cowan, N., Donkin,
C., Farrell, S., Hitch, G. ], Hurlstone, M. ., Ma, W. ], Morey, C. C., Nee, D. E., Schweppe,
J., Vergauwe, E., & Ward, G. (2018). Benchmarks for models of short-term and work-
ing memory. Psychological Bulletin, 144(9), 885-958. https://doi.org/10.1037 /bul
0000153

Oberauer, K., Stf3, H.-M., Schulze, R., Wilhelm, 0., & Wittmann, W. W. (2000). Working
memory capacity — facets of a cognitive ability construct. Personality and Individual
Differences, 29(6), 1017-1045. https://doi.org/10.1016/S0191-8869(99)00251-2

|76


https://doi.org/10.1080/15248372.2023.2248698
https://doi.org/10.1080/15248372.2023.2248698
https://doi.org/10.1037/amp0000934
https://doi.org/10.1111/j.1467-7687.2007.00600.x
https://doi.org/10.1111/j.1467-7687.2005.00394.x
https://doi.org/10.1111/j.1467-7687.2005.00394.x
https://doi.org/10.1111/jcpp.13241
https://doi.org/10.1111/jcpp.13241
https://doi.org/10.1037/0096-3445.134.3.368
https://doi.org/10.1037/rev0000159
https://doi.org/10.1037/rev0000159
https://doi.org/10.1037/bul0000153
https://doi.org/10.1037/bul0000153
https://doi.org/10.1016/S0191-8869(99)00251-2

Bibliography

Oberski, D. (2014). Lavaan.survey: An R package for complex survey analysis of struc-
tural equation models. Journal of Statistical Software, 57(1), 1-27. https://doi.org/10.
18637/jss.v057.i101

Parsons, S. (2021). Splithalf: Robust estimates of split half reliability. Journal of Open
Source Software, 6(60), 3041. https://doi.org/10.21105/joss.03041

Patten, S. B., Wilkes, T. C. R., Williams, ]. V. A,, Lavorato, D. H., el-Guebaly, N., Schopflocher,
D., Wild, C., Colman, I., & Bulloch, A. G. M. (2015). Retrospective and prospectively as-
sessed childhood adversity in association with major depression, alcohol consumption
and painful conditions. Epidemiology and Psychiatric Sciences, 24(2), 158-165. https://
doi.org/10.1017/S2045796014000018

Patton, . H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt Im-
pulsiveness Scale. Journal of Clinical Psychology, 51(6), 768-774. https://doi.org/10.
1002/1097-4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1

Patzelt, E. H., Hartley, C. A., & Gershman, S.]. (2018). Computational phenotyping: Using
models to understand individual differences in personality, development, and mental
illness. Personality Neuroscience, 1, e18. https://doi.org/10.1017 /pen.2018.14

Peng, P, & Fuchs, D. (2016). A meta-analysis of working memory deficits in children
with learning difficulties: Is there a difference between verbal domain and numeri-
cal domain? journal of Learning Disabilities, 49(1), 3-20. https://doi.org/10.1177/
0022219414521667

Pirrone, A., Stafford, T,, & Marshall, J. A. R. (2014). When natural selection should opti-
mize speed-accuracy trade-offs. Frontiers in Neuroscience, 8. https://doi.org/10.3389/
fnins.2014.00073

Polavarapu, A., & Hasbani, D. (2017). Neurological complications of nutritional disease.
Seminars in Pediatric Neurology, 24(1), 70-80. https://doi.org/10.1016/j.spen.2016.
12.002

Pollak, S. D. (2008). Mechanisms linking early experience and the emergence of emo-
tions: Illustrations from the study of maltreated children. Current Directions in Psycho-
logical Science, 17(6), 370-375. https://doi.org/10.1111/j.1467-8721.2008.00608.x

Poole, D, Grange, |. A.,, & Milne, E. (2024). Putting the spotlight back onto the flanker
task in autism: Autistic adults show increased interference from foils compared with
non-autistic adults. Journal of Cognition, 7(1), 1-15. https://doi.org/10.5334 /joc.369

|77


https://doi.org/10.18637/jss.v057.i01
https://doi.org/10.18637/jss.v057.i01
https://doi.org/10.21105/joss.03041
https://doi.org/10.1017/S2045796014000018
https://doi.org/10.1017/S2045796014000018
https://doi.org/10.1002/1097-4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1
https://doi.org/10.1002/1097-4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1
https://doi.org/10.1017/pen.2018.14
https://doi.org/10.1177/0022219414521667
https://doi.org/10.1177/0022219414521667
https://doi.org/10.3389/fnins.2014.00073
https://doi.org/10.3389/fnins.2014.00073
https://doi.org/10.1016/j.spen.2016.12.002
https://doi.org/10.1016/j.spen.2016.12.002
https://doi.org/10.1111/j.1467-8721.2008.00608.x
https://doi.org/10.5334/joc.369

Bibliography

Posner, M. L. (1980). Orienting of attention. Quarterly Journal of Experimental Psychol-
ogy, 32(2), 3-25. https://doi.org/10.1080/00335558008248231

Posner, M. [, & Mitchell, R. F. (1967). Chronometric analysis of classification. Psycholog-
ical Review, 74(5), 392-409. https://doi.org/10.1037/h0024913

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the
general population. Applied Psychological Measurement, 1(3), 385-401. https://doi.
org/10.1177/014662167700100306

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.
https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-
choice diffusion model of decision making. Decision, 2(4), 237-279. https://doi.org/
10.1037/dec0000030

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-
choice decision tasks. Neural Computation, 20(4), 873-922. https://doi.org/10.1162/
neco.2008.12-06-420

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions.
Psychological Science, 9(5), 347-356. https://doi.org/10.1111/1467-9280.00067

Ratcliff, R., Smith, P. L., & McKoon, G. (2015). Modeling regularities in response time
and accuracy data with the Diffusion Model. Current Directions in Psychological Science,
24(6), 458-470. https://doi.org/10.1177/0963721415596228

Rebello, K., Moura, L. M., Pinaya, W. H. L., Rohde, L. A,, & Sato, ]. R. (2018). Default mode
network maturation and environmental adversities during childhood. Chronic Stress,
2,2470547018808295. https://doi.org/10.1177/2470547018808295

Rey-Mermet, A. (2024). Beyond unity and diversity: Tasks used to assess attentional con-
trol measure task-specific processes. OSFE. https://doi.org/10.31234 /osf.io /jvbfn

Rey-Mermet, A, Gade, M., Souza, A. S., Bastian, C. C. von, & Oberauer, K. (2019). Is
executive control related to working memory capacity and fluid intelligence? Journal
of Experimental Psychology. General, 148(8), 1335-1372. https://doi.org/10.1037 /xge
0000593

178


https://doi.org/10.1080/00335558008248231
https://doi.org/10.1037/h0024913
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/dec0000030
https://doi.org/10.1037/dec0000030
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1111/1467-9280.00067
https://doi.org/10.1177/0963721415596228
https://doi.org/10.1177/2470547018808295
https://doi.org/10.31234/osf.io/jvbfn
https://doi.org/10.1037/xge0000593
https://doi.org/10.1037/xge0000593

Bibliography

Reynolds, A. ], Ou, S.-R., Mondi, C. F, & Giovanelli, A. (2019). Reducing poverty and in-
equality through preschool-to-3rd grade prevention services. The American Psycholo-
gist, 74(6), 653. https://doi.org/10.1037/amp0000537

Ribeiro, M., Yordanova, Y. N, Noblet, V,, Herbet, G., & Ricard, D. (2024). White matter
tracts and executive functions: A review of causal and correlation evidence. Brain,
147(2), 352-371. https://doi.org/10.1093 /brain/awad308

Ridderinkhof, K. R., Wylie, S. A., Wildenberg, W. P. M. van den, Bashore, T. R., & Molen, M.
W. van der. (2021). The arrow of time: Advancing insights into action control from the
arrow version of the Eriksen flanker task. Attention, Perception, & Psychophysics, 83(2),
700-721. https://doi.org/10.3758/s13414-020-02167-z

Rifkin-Graboi, A., Goh, S. K.-Y,, Chong, H. ]., Tsotsi, S., Sim, L. W, Tan, K. H., Chong, Y. S., &
Meaney, M. ]. (2021). Caregiving adversity during infancy and preschool cognitive func-
tion: Adaptations to context? Journal of Developmental Origins of Health and Disease,
12(6), 890-901. https://doi.org/10.1017/S2040174420001348

Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical
causal models for observational data. Advances in Methods and Practices in Psycholog-
ical Science, 1(1), 27-42. https://doi.org/10.1177/2515245917745629

Rosen, M. L., Amso, D., & McLaughlin, K. A. (2019). The role of the visual association
cortex in scaffolding prefrontal cortex development: A novel mechanism linking so-

cioeconomic status and executive function. Developmental Cognitive Neuroscience, 39,
100699. https://doi.org/10.1016/j.dcn.2019.100699

Rosen, M. L., Sheridan, M. A., Sambrook, K. A., Meltzoff, A. N., & McLaughlin, K. A. (2018).
Socioeconomic disparities in academic achievement: A multi-modal investigation of
neural mechanisms in children and adolescents. Neurolmage, 173, 298-310. https://
doi.org/10.1016/j.neuroimage.2018.02.043

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of
Statistical Software, 48, 1-36. https://doi.org/10.18637 /jss.v048.i02

Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual differences in exper-
imental tasks. Psychonomic Bulletin & Review, 26(2), 452-467. https://doi.org/10.
3758/s13423-018-1558-y

Salhi, C., Beatriz, E., McBain, R., McCoy, D., Sheridan, M., & Fink, G. (2021). Physical dis-
cipline, deprivation, and differential risk of developmental delay across 17 countries.

179


https://doi.org/10.1037/amp0000537
https://doi.org/10.1093/brain/awad308
https://doi.org/10.3758/s13414-020-02167-z
https://doi.org/10.1017/S2040174420001348
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1016/j.dcn.2019.100699
https://doi.org/10.1016/j.neuroimage.2018.02.043
https://doi.org/10.1016/j.neuroimage.2018.02.043
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.3758/s13423-018-1558-y
https://doi.org/10.3758/s13423-018-1558-y

Bibliography

Journal of the American Academy of Child & Adolescent Psychiatry, 60(2), 296-306.
https://doi.org/10.1016/j.jaac.2020.02.016

Salthouse, T. A. (2016). Little relation of adult age on cognition after controlling general
influences. Developmental Psychology, 52(10), 1545-1554. https://doi.org/10.1037/
dev0000162

Salthouse, T. A. (2019). Trajectories of normal cognitive aging. Psychology and Aging,
34(1), 17-24. https://doi.org/10.1037 /pag0000288

Schiéfer, J. L., McLaughlin, K. A., Manfro, G. G., Pan, P, Rohde, L. A., Miguel, E. C., Simioni,
A., Hoffmann, M. S., & Salum, G. A. (2022). Threat and deprivation are associated with
distinct aspects of cognition, emotional processing, and psychopathology in children
and adolescents. Developmental Science, 26(1), e13267. https://doi.org/10.1111/desc.
13267

Scherpenzeel, A. (2011). Data collection in a probability-based internet panel: How the
LISS Panel was built and how it can be used. Bulletin of Sociological Methodology, 109,
56-61. https://doi.org/10.1177/0759106310387713

Schmiedek, E, Hildebrandt, A., Lovdén, M., Wilhelm, O., & Lindenberger, U. (2009). Com-
plex span versus updating tasks of working memory: The gap is not that deep. Journal of
Experimental Psychology. Learning, Memory, and Cognition, 35(4), 1089-1096. https://
doi.org/10.1037/a0015730

Schmiedek, F, Oberauer, K., Wilhelm, O., Siif3, H.-M., & Wittmann, W. (2007). Individual
differences in components of reaction time distributions and their relations to working
memory and intelligence. Journal of Experimental Psychology: General, 136, 414-429.
https://doi.org/10.1037/0096-3445.136.3.414

Schmitz, F, & Wilhelm, O. (2016). Modeling mental speed: Decomposing response time
distributions in elementary cognitive tasks and correlations with working memory ca-
pacity and fluid intelligence. Journal of Intelligence, 4(4), 13. https://doi.org/10.3390/
jintelligence4040013

Schreiter, S., & Vogel, M. (2023). Eye-tracking measures as indicators for a local vs.
Global view of data. Frontiers in Education, 7. https://doi.org/10.3389 /feduc.2022.
1058150

Schreiter, S., & Vogel, M. (2024). Students’ local vs. Global views of data distributions:
A cross-grade-level analysis using eye-tracking. Educational Studies in Mathematics.
https://doi.org/10.1007/s10649-024-10352-2

180


https://doi.org/10.1016/j.jaac.2020.02.016
https://doi.org/10.1037/dev0000162
https://doi.org/10.1037/dev0000162
https://doi.org/10.1037/pag0000288
https://doi.org/10.1111/desc.13267
https://doi.org/10.1111/desc.13267
https://doi.org/10.1177/0759106310387713
https://doi.org/10.1037/a0015730
https://doi.org/10.1037/a0015730
https://doi.org/10.1037/0096-3445.136.3.414
https://doi.org/10.3390/jintelligence4040013
https://doi.org/10.3390/jintelligence4040013
https://doi.org/10.3389/feduc.2022.1058150
https://doi.org/10.3389/feduc.2022.1058150
https://doi.org/10.1007/s10649-024-10352-2

Bibliography

Schubert, A.-L., & Frischkorn, G. T. (2020). Neurocognitive psychometrics of intelli-
gence: How measurement advancements unveiled the role of mental speed in intelli-
gence differences. Current Directions in Psychological Science, 29(2), 140-146. https://
doi.org/10.1177/0963721419896365

Schubert, A.-L., Frischkorn, G. T,, Hagemann, D., & Voss, A. (2016). Trait characteris-
tics of diffusion model parameters. Journal of Intelligence, 4(3), 7. https://doi.org/10.
3390/jintelligence4030007

Schubert, A.-L., Nunez, M. D., Hagemann, D., & Vandekerckhove, ]J. (2019). Individual
differences in cortical processing speed predict cognitive abilities: A model-based cog-
nitive neuroscience account. Computational Brain & Behavior, 2(2), 64-84. https://doi.
org/10.1007/s42113-018-0021-5

Schwabe, L., Hoftken, O., Tegenthoff, M., & Wolf, 0. T. (2013). Stress-induced en-
hancement of response inhibition depends on mineralocorticoid receptor activation.
Psychoneuroendocrinology, 38(10), 2319-2326. https://doi.org/10.1016/j.psyneuen.
2013.05.001

Schwabe, L., Oitzl, M. S., Philippsen, C., Richter, S., Bohringer, A.,, Wippich, W,, &
Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response
learning strategies in humans. Learning & Memory, 14(1-2), 109-116. https://doi.org/
10.1101/Im.435807

Schwabe, L., & Wolf, O. T. (2009). Stress prompts habit behavior in humans. Journal of
Neuroscience, 29(22), 7191-7198. https://www.jneurosci.org/content/29/22/7191.
short

Shariq, D., Romeo, R. R, & Gard, A. M. (2024). Cognitive resilience and vulnerability to so-
cioeconomic disadvantage: Individual, family, school, and neighborhood predictors. OSF.
https://doi.org/10.31234 /osf.io/2kew7

Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural
development: Deprivation and threat. Trends in Cognitive Sciences, 18(11), 580-585.
https://doi.org/10.1016/j.tics.2014.09.001

Sheridan, M. A., Mukerji, C. E., Wade, M., Humphreys, K. L., Garrisi, K., Goel, S., Patel,
K., Fox, N. A, Zeanah, C. H,, Nelson, C. A., & McLaughlin, K. A. (2022). Early deprivation
alters structural brain development from middle childhood to adolescence. Science Ad-
vances, 8(40), eabn4316. https://doi.org/10.1126/sciadv.abn4316

181


https://doi.org/10.1177/0963721419896365
https://doi.org/10.1177/0963721419896365
https://doi.org/10.3390/jintelligence4030007
https://doi.org/10.3390/jintelligence4030007
https://doi.org/10.1007/s42113-018-0021-5
https://doi.org/10.1007/s42113-018-0021-5
https://doi.org/10.1016/j.psyneuen.2013.05.001
https://doi.org/10.1016/j.psyneuen.2013.05.001
https://doi.org/10.1101/lm.435807
https://doi.org/10.1101/lm.435807
https://www.jneurosci.org/content/29/22/7191.short
https://www.jneurosci.org/content/29/22/7191.short
https://doi.org/10.31234/osf.io/2kew7
https://doi.org/10.1016/j.tics.2014.09.001
https://doi.org/10.1126/sciadv.abn4316

Bibliography

Sheridan, M. A, Shi, F, Miller, A. B, Salhi, C,, & McLaughlin, K. A. (2020). Network
structure reveals clusters of associations between childhood adversities and develop-
ment outcomes. Developmental Science, 23(5), e12934. https://doi.org/10.1111/desc.
12934

Shields, G. S., Bonner, J. C., & Moons, W. G. (2015). Does cortisol influence core executive
functions? A meta-analysis of acute cortisol administration effects on working memory,
inhibition, and set-shifting. Psychoneuroendocrinology, 58,91-103. https://doi.org/10.
1016/j.psyneuen.2015.04.017

Shields, G. S., Doty, D., Shields, R. H., Gower, G., Slavich, G. M., & Yonelinas, A. P. (2017).
Recent life stress exposure is associated with poorer long-term memory, working
memory, and self-reported memory. Stress, 20(6), 598-607. https://doi.org/10.1080/
10253890.2017.1380620

Shields, G. S., Ramey, M. M,, Slavich, G. M., & Yonelinas, A. P. (2019). Determining the
mechanisms through which recent life stress predicts working memory impairments:
Precision or capacity? Stress, 22(2), 280-285. https://doi.org/10.1080/10253890.
2018.1556635

Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on
core executive functions: A meta-analysis and comparison with cortisol. Neuroscience
and Biobehavioral Reviews, 68, 651-668. https://doi.org/10.1016/j.neubiorev.2016.
06.038

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid
intelligence: Maintenance and disengagement. Perspectives on Psychological Science,
11(6), 771-799. https://doi.org/10.1177/1745691616650647

Shonkoff, J. P, Garner, A. S., Child, C. on P. A. of, Health, E, Care, D., Developmental, S. on,
Pediatrics, B., Siegel, B. S., Dobbins, M. L, Earls, M. E, Garner, A. S., McGuinn, L., Pascoe, ].,
& Wood, D. L. (2012). The lifelong effects of early childhood adversity and toxic stress.
Pediatrics, 129(1), e232-e246. https://doi.org/10.1542 /peds.2011-2663

Simon, J. R., & Wolf, J. D. (1963). Choice reaction time as a function of angular stimu-
lus-response correspondence and age. Ergonomics, 6(1), 99-105. https://doi.org/10.
1080/00140136308930679

Simonsohn, U., Simmons, . P, & Nelson, L. D. (2020). Specification curve analysis.
Nature Human Behaviour, 4(11), 1208-1214. https://doi.org/10.1038/s41562-020-
0912-z

182


https://doi.org/10.1111/desc.12934
https://doi.org/10.1111/desc.12934
https://doi.org/10.1016/j.psyneuen.2015.04.017
https://doi.org/10.1016/j.psyneuen.2015.04.017
https://doi.org/10.1080/10253890.2017.1380620
https://doi.org/10.1080/10253890.2017.1380620
https://doi.org/10.1080/10253890.2018.1556635
https://doi.org/10.1080/10253890.2018.1556635
https://doi.org/10.1016/j.neubiorev.2016.06.038
https://doi.org/10.1016/j.neubiorev.2016.06.038
https://doi.org/10.1177/1745691616650647
https://doi.org/10.1542/peds.2011-2663
https://doi.org/10.1080/00140136308930679
https://doi.org/10.1080/00140136308930679
https://doi.org/10.1038/s41562-020-0912-z
https://doi.org/10.1038/s41562-020-0912-z

Bibliography

Sliwinski, M. ]., Smyth, ]. M., Hofer, S. M., & Stawski, R. S. (2006). Intraindividual coupling
of daily stress and cognition. Psychology and Aging, 21(3), 545-557. https://doi.org/
10.1037/0882-7974.21.3.545

Slotkin, ]., Kallen, M., Griffith, ]., Magasi, S., Salsman, ]., & Nowinski, C. (2012). NIH tool-
box: Scoring and interpretation guide.

Smith, K. E., & Pollak, S. D. (2021). Rethinking concepts and categories for understand-
ing the neurodevelopmental effects of childhood adversity. Perspectives on Psychologi-
cal Science, 16(1), 67-93. https://doi.org/10.1177/1745691620920725

Spiegel, ]J. A.,, Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021).
Relations between executive functions and academic outcomes in elementary school
children: A meta-analysis. Psychological Bulletin, 147(4), 329-351. https://doi.org/10.
1037 /bul0000322

Spielberger, C. D., Sydeman, S. J., Owen, A. E., & Marsh, B. ]. (1999). Measuring anxiety
and anger with the State-Trait Anxiety Inventory (STAI) and the State-Trait Anger Ex-
pression Inventory (STAXI). In M. E. Maruish (Ed.), The use of psychological testing for
treatment planning and outcomes assessment (pp. 993-1021). Lawrence Erlbaum As-
sociates Publishers.

Spinella, M. (2007). Normative data and a short form of the Barratt Impulsiveness
Scale. International Journal of Neuroscience, 117(3), 359-368. https://doi.org/10.
1080/00207450600588881

Stahl, C,, Voss, A., Schmitz, E, Nuszbaum, M., Tiischer, O., Lieb, K., & Klauer, K. C. (2014).
Behavioral components of impulsivity. Journal of Experimental Psychology. General,
143(2), 850-886. https://doi.org/10.1037 /20033981

Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compro-
mise: Boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377-
390. https://doi.org/10.1037/a0018022

Steegen, S., Tuerlinckx, F, Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency
Through a Multiverse Analysis. Perspectives on Psychological Science, 11(5), 702-712.
https://doi.org/10.1177/1745691616658637

Steinberg, L., Graham, S., O’'Brien, L., Woolard, ]., Cauffman, E., & Banich, M. (2009). Age
differences in future orientation and delay discounting. Child Development, 80(1), 28-
44. https://doi.org/10.1111/j.1467-8624.2008.01244.x

183


https://doi.org/10.1037/0882-7974.21.3.545
https://doi.org/10.1037/0882-7974.21.3.545
https://doi.org/10.1177/1745691620920725
https://doi.org/10.1037/bul0000322
https://doi.org/10.1037/bul0000322
https://doi.org/10.1080/00207450600588881
https://doi.org/10.1080/00207450600588881
https://doi.org/10.1037/a0033981
https://doi.org/10.1037/a0018022
https://doi.org/10.1177/1745691616658637
https://doi.org/10.1111/j.1467-8624.2008.01244.x

Bibliography

Steudte-Schmiedgen, S., Stalder, T, Kirschbaum, C., Weber, F, Hoyer, ]., & Plessow, F.
(2014). Trauma exposure is associated with increased context-dependent adjustments
of cognitive control in patients with posttraumatic stress disorder and healthy controls.
Cognitive, Affective & Behavioral Neuroscience, 14(4), 1310-1319. https://doi.org/10.
3758/s13415-014-0299-2

Stevens, C., Lauinger, B., & Neville, H. (2009). Differences in the neural mechanisms of
selective attention in children from different socioeconomic backgrounds: An event-
related brain potential study. Developmental Science, 12(4), 634-646. https://doi.org/
10.1111/j.1467-7687.2009.00807.x

Sweeten, G. (2012). Scaling criminal offending. Journal of Quantitative Criminology,
28(3), 533-557. https://doi.org/10.1007 /s10940-011-9160-8

Taylor, R. L., & Barch, D. M. (2022). Inhibitory control within the context of early life
poverty and implications for outcomes. Neuroscience & Biobehavioral Reviews, 140,
104778. https://doi.org/10.1016/j.neubiorev.2022.104778

Team, R. C. (2022). R: A language and environment for statistical computing. https://
www.R-project.org/

Textor, ]., Zander, B. van der, Gilthorpe, M. S., Liskiewicz, M., & Ellison, G. T. (2016).
Robust causal inference using directed acyclic graphs: The R package “dagitty.” Inter-
national Journal of Epidemiology, 45(6), 1887-1894. https://doi.org/10.1093/ije/dyw
341

Thompson, A, & Steinbeis, N. (2021). Computational modelling of attentional bias to-
wards threat in paediatric anxiety. Developmental Science, 24(3), e13055. https://doi.
org/10.1111/desc.13055

Tibu, F, Sheridan, M. A., McLaughlin, K. A, Nelson, C. A, Fox, N. A, & Zeanah, C.
H. (2016). Disruptions of working memory and inhibition mediate the association
between exposure to institutionalization and symptoms of attention deficit hyperac-
tivity disorder. Psychological Medicine, 46(3), 529-541. https://doi.org/10.1017/S
0033291715002020

Trimmer, P. C,, Houston, A. [, Marshall, ]. A. R,, Bogacz, R, Paul, E. S, Mend], M. T, &
McNamara, J. M. (2008). Mammalian choices: Combining fast-but-inaccurate and slow-
but-accurate decision-making systems. Proceedings of the Royal Society B: Biological
Sciences, 275(1649), 2353-2361. https://doi.org/10.1098/rspb.2008.0417

184


https://doi.org/10.3758/s13415-014-0299-2
https://doi.org/10.3758/s13415-014-0299-2
https://doi.org/10.1111/j.1467-7687.2009.00807.x
https://doi.org/10.1111/j.1467-7687.2009.00807.x
https://doi.org/10.1007/s10940-011-9160-8
https://doi.org/10.1016/j.neubiorev.2022.104778
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1093/ije/dyw341
https://doi.org/10.1093/ije/dyw341
https://doi.org/10.1111/desc.13055
https://doi.org/10.1111/desc.13055
https://doi.org/10.1017/S0033291715002020
https://doi.org/10.1017/S0033291715002020
https://doi.org/10.1098/rspb.2008.0417

Bibliography

Tucker-Drob, E. M. (2013). How many pathways underlie socioeconomic differences
in the development of cognition and achievement? Learning and Individual Differences,
25,12-20. https://doi.org/10.1016/j.1indif.2013.01.015

Ugarte, E., & Hastings, P. D. (2023). Assessing unpredictability in caregiver-child rela-
tionships: Insights from theoretical and empirical perspectives. Development and Psy-
chopathology, 36(3), 1070-1089. https://doi.org/10.1017/S0954579423000305

Ulrich, R, Schréter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled
stimulus processing in conflict tasks: Superimposed diffusion processes and delta func-
tions. Cognitive Psychology, 78, 148-174. https://doi.org/10.1016/j.cogpsych.2015.02.
005

Ursache, A., & Noble, K. G. (2016a). Neurocognitive development in socioeconomic con-
text: Multiple mechanisms and implications for measuring socioeconomic status. Psy-
chophysiology, 53(1), 71-82. https://doi.org/10.1111/psyp.12547

Ursache, A., & Noble, K. G. (2016b). Socioeconomic status, white matter, and executive
function in children. Brain and Behavior, 6(10), e00531. https://doi.org/10.1002/brb
3.531

Van Calster, L., D’Argembeau, A., & Majerus, S. (2018). Measuring individual differences
in internal versus external attention: The attentional style questionnaire. Personality
and Individual Differences, 128, 25-32. https://doi.org/10.1016/j.paid.2018.02.014

Van den Brakel, M., Lok, R., Otten, F, Vandewal, E., Bos, J., Warnaar, M., Wieman, G.,
Goderis, B, Hoff, S., Muns, S., & Tunderman, S. (2023). Op weg naar een nieuwe armoede-
grens. Tussenrapport van het gezamenlijke project 'Uniformering armoedeafbakening’
https://www.scp.nl/publicaties/publicaties /2023 /06 /30/op-weg-naar-een-nieuwe-
armoedegrens

Van Gelder, ].-L., & Frankenhuis, W. E. (2024). Short-term mindsets and crime. An-
nual Review of Criminology, 8, 15.1-15.26. https://doi.org/10.1146 /annurev-criminol-
022422-124536

Van Veen, V,, Krug, M. K, & Carter, C. S. (2008). The neural and computational basis of
controlled speed-accuracy tradeoff during task performance. Journal of Cognitive Neu-
roscience, 20(11), 1952-1965. https://doi.org/10.1162 /jocn.2008.20146

Vandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous
analysis of behavioral and personality data. Journal of Mathematical Psychology, 60, 58—
71. https://doi.org/10.1016/j.jmp.2014.06.004

185


https://doi.org/10.1016/j.lindif.2013.01.015
https://doi.org/10.1017/S0954579423000305
https://doi.org/10.1016/j.cogpsych.2015.02.005
https://doi.org/10.1016/j.cogpsych.2015.02.005
https://doi.org/10.1111/psyp.12547
https://doi.org/10.1002/brb3.531
https://doi.org/10.1002/brb3.531
https://doi.org/10.1016/j.paid.2018.02.014
https://www.scp.nl/publicaties/publicaties/2023/06/30/op-weg-naar-een-nieuwe-armoedegrens
https://www.scp.nl/publicaties/publicaties/2023/06/30/op-weg-naar-een-nieuwe-armoedegrens
https://doi.org/10.1146/annurev-criminol-022422-124536
https://doi.org/10.1146/annurev-criminol-022422-124536
https://doi.org/10.1162/jocn.2008.20146
https://doi.org/10.1016/j.jmp.2014.06.004

Bibliography

Vandekerckhove, |., Tuerlinckx, F, & Lee, M. D. (2011). Hierarchical diffusion models
for two-choice response times. Psychological Methods, 16(1), 44-62. https://doi.org/
10.1037/a0021765

Vermeent, S. (2023). Projectlog: Tools for documenting your project workflow. https://
stefanvermeent.github.io/projectlog/

Vermeent, S., Schubert, A.-L., DeJoseph, M. L., Denissen, J. ]. A, Van Gelder, J.-L., &
Frankenhuis, W. E. (2025). Inconclusive evidence for associations between adverse ex-

periences in adulthood and working memory performance. Royal Society Open Science.
https://doi.org/10.1098/rsos.241837

Vermeent, S., Schubert, A.-L., Young, E. S., DeJoseph, M. L., & Frankenhuis, W. E. (2024).
Cognitive deficits and enhancements in youth from adverse conditions: An integrative
assessment using Drift Diffusion Modeling in the ABCD study. Developmental Science,
e13478. https://doi.org/10.1111/desc.13478

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology:
A practical introduction. Experimental Psychology, 60(6), 385-402. https://doi.org/10.
1027/1618-3169/a000218

Voss, A, Rothermund, K., & Voss, ]. (2004). Interpreting the parameters of the diffusion
model: An empirical validation. Memory & Cognition, 32(7), 1206-1220. https://doi.
org/10.3758/BF03196893

Voss, A, Voss, ]., & Lerche, V. (2015). Assessing cognitive processes with diffusion model
analyses: A tutorial based on fast-dm-30. Frontiers in Psychology, 6. https://doi.org/10.
3389/fpsyg.2015.00336

Wagenmakers, E.-]. (2009). Methodological and empirical developments for the Ratcliff
diffusion model of response times and accuracy. European Journal of Cognitive Psychol-
ogy, 21(5), 641-671. https://doi.org/10.1080/09541440802205067

Walasek, N., Young, E. S., & Frankenhuis, W. E. (2024). A framework for studying envi-
ronmental statistics in developmental science. Psychological Methods. https://doi.org/
10.1037/met0000651

Weigard, A., Clark, D. A, & Sripada, C. (2021). Cognitive efficiency beats top-down con-
trol as areliable individual difference dimension relevant to self-control. Cognition, 215,
104818. https://doi.org/10.1016/j.cognition.2021.104818

186


https://doi.org/10.1037/a0021765
https://doi.org/10.1037/a0021765
https://stefanvermeent.github.io/projectlog/
https://stefanvermeent.github.io/projectlog/
https://doi.org/10.1098/rsos.241837
https://doi.org/10.1111/desc.13478
https://doi.org/10.1027/1618-3169/a000218
https://doi.org/10.1027/1618-3169/a000218
https://doi.org/10.3758/BF03196893
https://doi.org/10.3758/BF03196893
https://doi.org/10.3389/fpsyg.2015.00336
https://doi.org/10.3389/fpsyg.2015.00336
https://doi.org/10.1080/09541440802205067
https://doi.org/10.1037/met0000651
https://doi.org/10.1037/met0000651
https://doi.org/10.1016/j.cognition.2021.104818

Bibliography

Weigard, A., & Sripada, C. (2021). Task-general efficiency of evidence accumulation as
a computationally defined neurocognitive trait: Implications for clinical neuroscience.
Biological Psychiatry Global Open Science, 1(1), 5-15. https://doi.org/10.1016/j.
bpsgos.2021.02.001

White, C. N., & Curl, R. (2018). Cueing effects in the Attentional Network Test: A Spot-
light Diffusion Model analysis. Computational Brain & Behavior, 1(1), 59-68. https://
doi.org/10.1007/s42113-018-0004-6

White, C. N., & Kitchen, K. N. (2022). On the need to improve the way individ-
ual differences in cognitive function are measured with reaction time tasks. Cur-
rent Directions in Psychological Science, 31(3), 223-230. https://doi.org/10.1177/
09637214221077060

White, C. N., Ratcliff, R., & Starns, ]. ]. (2011). Diffusion models of the flanker task:
Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210-238.
https://doi.org/10.1016/j.cogpsych.2011.08.001

White, C. N,, Servant, M., & Logan, G. D. (2018). Testing the validity of conflict drift-diffu-
sion models for use in estimating cognitive processes: A parameter-recovery study. Psy-
chonomic Bulletin & Review, 25(1), 286-301. https://doi.org/10.3758/s13423-017-
1271-2

Wiecki, T. V., Sofer, [, & Frank, M. ]. (2013). HDDM: Hierarchical Bayesian estimation of
the Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 7, 14. https://doi.
org/10.3389/fninf.2013.00014

Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity,
and how can we measure it? Frontiers in Psychology, 4. https://doi.org/10.3389 /fpsyg.
2013.00433

Young, E. S., Frankenhuis, W. E., DelPriore, D. ], & Ellis, B. ]. (2022). Hidden talents
in context: Cognitive performance with abstract versus ecological stimuli among ad-
versity-exposed youth. Child Development, 1493-1510. https://doi.org/10.1111/cdev.
13766

Young, E. S., Frankenhuis, W. E., & Ellis, B. ]. (2020). Theory and measurement of envi-
ronmental unpredictability. Evolution and Human Behavior, 41(6), 550-556. https://
doi.org/10.1016/j.evolhumbehav.2020.08.006

Young, E. S., Griskevicius, V.,, Simpson, |. A., & Waters, T. E. A. (2018). Can an unpre-
dictable childhood environment enhance working memory? Testing the sensitized-

|87


https://doi.org/10.1016/j.bpsgos.2021.02.001
https://doi.org/10.1016/j.bpsgos.2021.02.001
https://doi.org/10.1007/s42113-018-0004-6
https://doi.org/10.1007/s42113-018-0004-6
https://doi.org/10.1177/09637214221077060
https://doi.org/10.1177/09637214221077060
https://doi.org/10.1016/j.cogpsych.2011.08.001
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.3389/fpsyg.2013.00433
https://doi.org/10.3389/fpsyg.2013.00433
https://doi.org/10.1111/cdev.13766
https://doi.org/10.1111/cdev.13766
https://doi.org/10.1016/j.evolhumbehav.2020.08.006
https://doi.org/10.1016/j.evolhumbehav.2020.08.006

Bibliography

specialization hypothesis. Journal of Personality and Social Psychology, 114(6), 891-
908. https://doi.org/10.1037 /pspi0000124

Young, E. S., & Vermeent, S. (2023). Multitool: Run multiverse style analyses. https://
ethan-young.github.io/multitool/

Young, E. S., Vermeent, S., Frankenhuis, W. E., Nivison, M., Simpson, J. A., & Roisman,
G. 1. (2024). How does adversity shape performance across different abilities in the
same person? Development and Psychopathology, 1-18. https://doi.org/10.1017/S
0954579424001433

Yuan, Z., Qin, W,, Wang, D., Jiang, T., Zhang, Y., & Yu, C. (2012). The salience network con-
tributes to an individual’s fluid reasoning capacity. Behavioural Brain Research, 229(2),
384-390. https://doi.org/10.1016/j.bbr.2012.01.037

Zelazo, P. D. (2006). The Dimensional Change Card Sort (DCCS): A method of assess-
ing executive function in children. Nature Protocols, 1(1), 297-301. https://doi.org/10.
1038/nprot.2006.46

Zelazo, P. D., Anderson, ]. E,, Richler, J., Wallner-Allen, K., Beaumont, J. L., Conway, K. P,
Gershon, R., & Weintraub, S. (2014). NIH Toolbox Cognition Battery (CB): Validation of
executive function measures in adults. Journal of the International Neuropsychological
Society, 20(6), 620-629. https://doi.org/10.1017/S1355617714000472

Zelazo, P. D., Anderson, |. E., Richler, ], Wallner-Allen, K., Beaumont, J. L., & Weintraub,
S. (2013). II. NIH Toolbox Cognition Battery (CB): Measuring executive function and
attention. Monographs of the Society for Research in Child Development, 78(4), 16-33.
https://doi.org/10.1111/mono.12032

Zelazo, P. D., & Carlson, S. M. (2023). Reconciling the context-dependency and do-
main-generality of executive function skills from a developmental systems perspec-
tive. Journal of Cognition and Development, 24(2), 205-222. https://doi.org/10.1080/
15248372.2022.2156515

Zucker, R. A, Gonzalez, R, Feldstein Ewing, S. W,, Paulus, M. P, Arroyo, ]., Fuligni, A,
Morris, A. S., Sanchez, M., & Wills, T. (2018). Assessment of culture and environment in
the Adolescent Brain and Cognitive Development Study: Rationale, description of mea-
sures, and early data. Developmental Cognitive Neuroscience, 32, 107-120. https://doi.
org/10.1016/j.dcn.2018.03.004

Zuilkowski, S. S., McCoy, D. C., Serpell, R, Matafwali, B.,, & Fink, G. (2016). Dimen-
sionality and the development of cognitive assessments for children in Sub-Saharan

188


https://doi.org/10.1037/pspi0000124
https://ethan-young.github.io/multitool/
https://ethan-young.github.io/multitool/
https://doi.org/10.1017/S0954579424001433
https://doi.org/10.1017/S0954579424001433
https://doi.org/10.1016/j.bbr.2012.01.037
https://doi.org/10.1038/nprot.2006.46
https://doi.org/10.1038/nprot.2006.46
https://doi.org/10.1017/S1355617714000472
https://doi.org/10.1111/mono.12032
https://doi.org/10.1080/15248372.2022.2156515
https://doi.org/10.1080/15248372.2022.2156515
https://doi.org/10.1016/j.dcn.2018.03.004
https://doi.org/10.1016/j.dcn.2018.03.004

Bibliography

Africa. Journal of Cross-Cultural Psychology, 47(3), 341-354. https://doi.org/10.1177/
0022022115624155

189


https://doi.org/10.1177/0022022115624155
https://doi.org/10.1177/0022022115624155




Supplementary materials






Appendix |

Appendix | - Chapter 2

Data access workflow

Prior to Stage 1 submission of the Registered Report, we accessed the cognitive task
data for a couple of preregistered data checks. By only accessing the cognitive task data,
these steps did not bias or substantive analyses involving measures of adversity. To
transparently show when we accessed which data, we created an open science work-
flow that would automate this process. The main aim of this workflow was to create
a transparent log of every major milestone of the project, such as accessing new data,
submitting preregistrations, and finalizing analyses.

The main ingredient of this workflow is a set of custom functions that we created
for reading in data files (See Figure A1.1). These are wrappers for the read functions in
the readr package. Whenever one of these functions (e.g., read_csv) was called, it went
through a couple of internal processes. First, the specified data file would be read into
R (but not yet accessible to us in the global environment). This could be a single file, or
a list of individual data files that would first be combined into a single dataframe. Sec-
ond, any specified manipulations would be applied to the data. This could be selecting
specific variables, filtering specific rows, or randomly shuffling values (e.g., participant
IDs). Third, An MD5 hash of the final R object would be generated using the digest pack-
age. An MD5 hash is a unique, 32-digit string that maps directly onto the content of the
R object. The same R object will always generate the same MD5 hash, but as soon as
anything changes (e.g. a variable is added, a value is rounded), the MD5 hash changes.
Fourth, this MD5 hash would be compared to previously generated hashes.

If the newly generated MD5 hash was not recognized, this triggered an automatic
commit to GitHub. At this point, the user gets the choice to abort the process or to con-
tinue. Aborting would terminate the process without importing the data. If opting to
continue, the user could supply an informative message (e.g., “accessed Flanker data”),
which would be added to the Git commit. The Git commit message stored other relevant
meta-data as well, such as the object hash and the code used to read and manipulate
the data. Committing and pushing to Git was handled using the gert package.

Thus, any accessing of raw data was automatically tracked via GitHub. Using this
same approach, we also logged other major milestones, such as submitting preregis-

trations and finalizing analyses.

An automatically generated overview of all milestones can be found in the Data
Access History.
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Figure A1.1. Graphical overview of the data access workflow using R and GitHub.

Power analysis

We conducted a power analysis through simulation using the simulateData function of
the lavaan package. On each iteration, we first specified a population model (i.e., the
‘true’ model) with prespecified factor loadings and regression coefficients. Factor load-
ings in this model were randomly generated between 0.6 and 0.8 following a uniform
distribution. Next, we simulated data sets based on the population model. Finally, we
fitted a sample model (i.e., without constrained parameters) to the simulated data and
extracted the beta coefficients and corresponding p-values. We generated population
models with beta coefficients of 0.06, 0.08 and 0.1, and simulated data with sample
sizes ranging from 1,500 to 8,500 with steps of 1,000. Each combination of coefficients
and sample sizes was repeated 500 times, for a total of 12,000 iterations.
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Figure A1.2. Results of the power simulations. The dashed line indicates 90% power.

The results are shown in Figure A1.2. The simulations yield power > 90% at
around N = 2,500 for 8 = 0.1 and N = 6,500 for 8 = 0.06. Thus, after taking out 1,500
participants for the training set, the test set is highly powered.

Response Distributions of Cognitive Tasks
See Table A1.1 for descriptive statistics for all cognitive tasks.

Table A1.1.
Descriptive statistics of mean RTs and accuracy for the cognitive tasks.
Mean (SD) hean(@0)  Mis e fieceracy
Processing Speed 2.24 (0.47) 96.42 (4.3) 5517 100
Flanker 0.91(0.33) 99.31(3.25) 52.63 100
Mental Rotation 2.65(0.47) 59.25(16.81) 6.25 100
(

Attention Shifting  1.01 (0.35) 92.94 (6.76) 22.22 100

Overview of DDM Modeling Procedure

In theory, the hierarchical Bayesian framework allows simultaneously estimating DDM
parameters, latent measurement models, and the regression paths between them in
a single step (e.g., Schubert et al.,, 2019; Vandekerckhove, 2014). An advantage of this
approach is that information regarding estimation uncertainty (e.g., of the DDM para-
meters) gets integrated in subsequent steps. However, this approach is very computa-
tionally expensive and might even be unfeasible with the current sample size. There-
fore, we opted for a two-step estimation approach.

The hierarchical DDM models was fit using the runjags package (Denwood, 2016)
with JAGS code adapted from D. J. Johnson et al. (2017). The JAGS code was adjusted
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in a number of ways to meet our purposes. Across all models, the starting point was
fixed to 0.5, and the boundary separation was constrained to be the same across con-
ditions where relevant. Each model was fit with three Markov Chain Monte Carlo (M-
CMC) chains. Each chain contained 2,000 burn-in samples and 10,000 additional sam-
ples. Of these samples, every 10th sample was retained. Posterior samples of all three
chains were combined, resulting in a posterior sample of 3,000 samples. If a model did
not converge properly with these settings, we increased the amount of samples drawn
stepwise up to 100,000.

Model convergence was assessed in several ways. First, we visually inspected the
traces, which should not contain any drifts or large jumps. Second, we calculated the
Gelman-Rubin convergence statistic R* (Gelman & Rubin, 1992), of which all values
should be below 1.1. Third, we assessed whether the model provided a good fit to the
participants’ data using simulation (See Figure A1.3 for a visualization of this proce-
dure). When we estimate DDM parameters for a participant, we want to be sufficiently
sure that the parameters accurately reflect the participant’s real cognitive processes.
Some factors can bias estimates. For example, trial-level outliers could bias DDM para-
meters so that they are no longer representative of the full RT distribution. Thus, be-
fore using the obtained DDM parameters to address our hypotheses, we need to make
sure that they accurately reflect participant’s cognitive processes. It is standard prac-
tice in cognitive modeling to use simulation to evaluate the accuracy of parameter re-
covery (Lewandowsky & Farrell, 2010). Imagine that for child A, the model estimates
a drift rate of 2, a boundary separation of 1, and a non-decision time of 0.5. To evaluate
whether these values likely reflect the child’s “true” parameter values (i.e., the combi-
nation of cognitive processes that produce their pattern of RTs and accuracy), we take
each child’s estimated DDM parameters and use them to simulate RT/accuracy data.
This procedure is analogous to drawing values from a normal distribution if we know
the relevant parameters (i.e., the mean and standard deviation). Similarly, we can draw
simulated values (combinations of an RT and accuracy) based on the child’s parameter
estimates. If the child’s DDM parameter estimates are valid, the simulated RT /accuracy
data should be highly correlated with the child’s actual data. We computed overall cor-
relations between the observed and simulated scores for RTs in the 25th, 50th and 75th
percentile of the RT distribution as well as for accuracy rates. If the correlation was
<.80, we took steps to improve model fit (see below).

In addition, we also computed correlations between observed and simulated RTs
and accuracy at different levels of the two adversity measures: <1SD, 215D<, and >1SD.
This told us whether parameter recovery was worse for specific subgroups of partici-
pants, which would require caution when interpreting the results. If correlations for
specific subgroups were low but the overall correlation was > .80, we still used the es-
timates in the analyses.
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1. Observed data 2, Fit DDM 3. Simulate data based on DDM parameters
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@ simulated trials 25 observed data (see Table A1,2).
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Figure A1.3. Graphical overview of the simulation-based model fit procedure. First, we fit the DDM
to the observed response times and accuracy rates (step 1-2). Then, we use the resulting DDM parameter
estimates of each participant to simulate new data (step 3). Finally, we compute correlations between
the observed and simulated response times (separately at the 25th, 50h, and 75th percentile of the re-
sponse time distribution) and accuracy rates (Step 4). We deviated from our preregistered simulation
procedure (simulating the same number of trials as the observed data; step 3.1) by instead simulating
100 trials per task (step 3.2). This deviation is explained in more detail in the main text. Note: The scat-
terplots do not present real data but are for illustrative purposes only.

In case of overall model fit < .80 for a particular task, we determined criteria to
find outliers based on the following simulation procedure. First, we would simulate
DDM parameters for 10,000 participants based on the overall sample parameter distri-
butions (means, standard deviations, and the variance-covariance matrix). Second, we
would generate RT and accuracy data based on this new set of simulated parameters.
Third, we would fit the DDM to these RT and accuracy data and again generate RT and
accuracy data from these estimated DDM parameters. Thus, this procedure would yield
a set of simulated RT/accuracy data and corresponding recovered RT/accuracy data.
We would fit regression models predicting estimated RTs and accuracy with simulated
RTs and accuracy at the 25th, 50th and 75th percentile. The 2.5% and 97.5% quantiles
of the residuals would be extracted from each model and used as cut-offs for bad model
fit. Participants would be excluded if any of their RTs or accuracies are larger than these
cut-offs. After excluding outliers, we would fit the DDM model again and repeat model
fit assessments.

Imputation of the Mental Rotation Task

During preprocessing, we discovered that the 5-second response cut-off that was used
for the Mental Rotation Task led to severe truncation of the RT distribution. This is
problematic because the tail of the distribution holds important information about
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stages of processing. Truncation of reasonably long RTs can therefore lead to biased
DDM parameter estimates. The hierarchical Bayesian framework allows these missing
values to be imputed based on the rest of the data, which has been shown to lead to
unbiased estimates. The procedure is described in detail in the supplemental materials
of D.].Johnson etal. (2017). In short, it involves two steps. First, responses are sampled
probabilistically for each missing trial based on the overall accuracy of the participant.
For example, if a participant has an overall accuracy of 80%, each missing response
has a probability of .80 to be assigned a 1 (i.e., correct response). Second, responses
are assigned to three bins. The first bin contains incorrect (imputed) RTs slower than
5 seconds (coded as -5). The second bin contains the observed data, ranging between
-5 and 5 seconds. The third bin contains correct (imputed) RTs slower than 5 seconds
(coded as 5). JAGS then imputes the response times for missing trials based on these
thresholds. We will compare model versions with and without imputation of missing
responses. A simulation demonstrating the feasibility of this approach is described be-
low (DDM simulation 5: Imputation of missing RTs)

DDM simulations: The effect of few trials per participant

The number of trials that is available for each of the cognitive tasks is substantially
lower than is typical for DDM analyses. This is especially true for the Flanker Task (8
incongruent trials, 12 congruent trials) and the Attention Shifting Task (7 switch trials,
23 repeat trials). While each participant completed a small number of trials, the hier-
archical Bayesian framework can use information from the full sample to estimate and
constrain individual estimates. Here, we report simulation studies that aimed to assess
whether it would be possible to accurately recover parameter estimates. The analyses
are modeled on the Flanker Task, which is the task with the lowest overall number of
trials (N = 20). For simulations involving two conditions, we assume (as we do in the
real data) that the drift rate and non-decision time differ (and are correlated) across
conditions, and that the boundary separation is the same across conditions. This latter
assumption reflects the fact that conditions are randomly shuffled on a trial-by-trial ba-
sis, which prohibits participants from adapting their strategy for different conditions.
The starting point is fixed to the mid-point (0.5) for all simulations.

DDM simulation 1: Single condition with eight trials

First, we simulated task data for 1,500 participants with eight trials per participant. We
used the first 2,000 samples as burn-in, and then took an additional 10,000 samples.
Every 10th sample was discarded to reduce the size of final model object. We sampled
across three chains, which were subsequently combined, for a total of 3,000 samples.
The model converged normally (Figure A1.4). Relative parameter recovery was decent
for boundary separation (r =.76) and non-decision time (r =.73), but not for drift rate
(r = .54). However, estimates of boundary separation and non-decision time showed
substantial bias (See Figure A1.5).

As discussed above, the models reported in this manuscript will not be constricted
to eight trials. Instead, they will be able to use the information of both conditions (e.g.,
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Figure A1.4. Convergence of the model in simulation 1. Plots should resemble a ‘fat, hairy cater-
pillar’.
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Figure A1.5. Parameter recovery in the case of two conditions. a = Boundary Separation; t = Non-
Decision Time; v = Drift Rate.

congruent and incongruent for the Flanker Task), as parameters will tend to be corre-
lated across conditions. Therefore, we ran a second simulation adding realistic condi-
tion effects.

DDM simulation 2: Two conditions; Boundary Separation fixed across conditions
We again simulated task data for 1,500 participants. Mirroring the real Flanker task,
we simulated two conditions, one with 8 trials (incongruent) and one with 12 trials
(congruent). On average, drift rates were lower and non-decision times were longer
for incongruent trials. Boundary separation was fixed within subjects to be equal
across conditions. Non-decision times correlated on average .70 between conditions,
and drift rates correlated on average .30 between conditions. These correlations were
based on previous studies that we did using the Flanker Task. For more information
on the specific settings, see https://github.com/stefanvermeent/abcd_ddm/scripts/0_
simulations/ddm_trial_simulations.R.

As the model converged without issues in simulation 1, we tried reducing the
number of samples (2,000 burn-in with an additional 2,000 samples) to save time. The
model converged normally (Figure A1.6). Correlations between simulated and recov-
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Figure A1.6. Convergence of the model in simulation 2. Plots should resemble a ‘fat, hairy cater-
pillar’.

ered parameter estimates was high, ranging between r = .84 for the drift rate and .95
for the non-decision time (see Figure A1.7).

Recovered

Simulation 1 and 2 involved data of 1,500 simulated subjects. However, the sample
size of our real data set is roughly 10,000. Thus, in the real data there is substantially
more group-level data to inform and constrain the individual parameter estimates. we
ran a third simulation to investigate if—and to what extent—the parameter estimates
would improve moving from 1,500 to 10,000 participants.

Condition

05 1.0 15 20

Decision Time; v = Drift Rate

200
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Figure A1.7. Parameter recovery in the case of two conditions. a = Boundary Separation; t = Non-
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DDM simulation 3: Two conditions; 10,000 subjects
We simulated task data for 10,000 participants. All other simulation settings were
identical to simulation 2.

The model converged normally (Figure A1.8). Correlations between simulated and
recovered parameter estimates were high and very similar to those found in simulation
2, ranging between r = .83 for the drift rate and .95 for the non-decision time (see Fig-
ure A1.9). Thus, the benefit of adding more subjects is already saturated around 1,500
participants, with additional participants not improving parameter estimation.

Overall, we conclude that applying hierarchical Bayesian DDM to the ABCD data is
feasible.

a t
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Figure A1.9. Parameter recovery in the case of two conditions. a = Boundary Separation; t = Non-
Decision Time; v = Drift Rate
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Additional DDM simulations

DDM simulation 4: Does shrinkage bias the associations between parameter es-
timates and adversity?

One of the reviewers noted that the hierarchical Bayesian DDM tends to compress pa-
rameter estimates by pulling extreme values toward the group mean (a phenomenon
known as shrinkage). A concern may be that this could potentially reduce the individ-
ual differences of interest, especially if these occur in the tail of the distribution (e.g.,
the participants with the highest levels of adversity obtaining the most extreme para-
meter estimates). In general, this is not the case; in contrast, shrinkage tends to pull
less reliable and outlier estimates towards the group mean, which has been shown to
positively affect the signal-to-noise ratio and reliability of parameter estimates in cog-
nitive neuroscience (Dai et al., 2017; Mejia et al., 2018). To specifically study the effects
of shrinkage on the variance of DDM parameter estimates, we nevertheless ran a sim-
ulation to investigate the likelihood that shrinkage might obscure adversity-DDM pa-
rameter associations.

We simulated DDM parameters for 1,500 participants. Participants’ adversity
scores followed a log-normal distribution (mean, = 0, sdi,; = 0.3) to approximate the
skew in the right tail typically found in adversity scores. Drift rates were simulated
based on a standardized association of 8 = 0.1 with the adversity score. Thus, higher
levels of adversity tended to be associated with higher drift rates. Based on the sim-
ulated DDM parameters, we simulated 20 trials (RTs and accuracy) per participant,
which were then used as input to the DDM model. We used the first 2,000 samples as
burn-in, and then took an additional 2,000 samples. We sampled across three chains,
which were subsequently combined, for a total of 6,000 samples.

All parameters were recovered with high correlations ranging between 0.84 and
0.97. Figure A1.10 shows signs of shrinkage, especially in the right tail of the drift rate
distribution. However, the difference in standard deviations was minimal (SDgmuiated =
1.52; SDrecoverea = 1.46.

Next, we calculated the deviations between each simulated and recovered para-
meter estimate and plotted this against the adversity scores (See Figure A1.11). None
of the associations were statistically significant (all ps > .05 for linear and quadratic
effects).

Finally, we fitted a linear mixed model predicting drift rates estimates as a func-
tion of adversity, dataset (simulated vs. recovered; dummy-coded with simulated as the
reference category), and the adversity x dataset interaction to assess whether the dif-
ference between simulated and recovered drift rates would be different at low, average,
and high levels of adversity. We did not find a significant adversity x dataset interaction,
b =-0.03, p =.163. As Figure A1.12 illustrates, there seemed to be small shrinkage ef-
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Figure A1.10. Histograms of simulated and recovered parameter estimates. a = Boundary Separa-
tion; t = Non-Decision Time; v = Drift Rate.
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Figure A1.11. Deviation between simulated and recovered parameter estimates as a function of
adversity. The regression lines show quadratic effects. a = Boundary Separation; t = Non-Decision Time;
v = Drift Rate.

fects at the low and high levels of adversity. However, none of these simple slope effects
were statistically significant. Taken together, we conclude that DDM recovery at higher
levels of adversity was not less precise compared to lower levels of adversity.

DDM simulation 5: Imputation of missing RTs

To demonstrate the feasibility of the imputation approach for the Mental Rotation Task,
we ran a simulation based on 1500 participants in which RT and accuracy data were
generated modeled on the real Mental Rotation Task data (RT: M, = 2.65, Mg, = 2.76;
Accuracy: Mye, = 59.25%, Mg, = 67.23%; RTs above 5 s cut-off: M., = 10.04%, Mg, =
8.18%). We fitted two DDM models: one that was fit to the complete data (including
RTs > 5 s) and one that was fit to data in which all RTs > 5 s were set to missing. In the
latter case, missing RTs were imputed as described above. All other model fit settings
were identical to simulations 2-4. Correlations between DDM parameters based on the
complete data and imputed data were near perfect, r = 1 for drift rate, r = 0.996 for
non-decision time, and r = 0.993 for boundary separation.

203



Supplementary materials

3.6
3.4 1
Adversity

3 p=0.278
B as -~ Low (-1SD)
g . ° p =0.890 ° —®— Average
o p=0.374 e High (+1SD)

3.01 A

2.81

Simulated Recovered
Dataset

Figure A1.12. Simple slopes of the difference between simulated and estimated drift rates at dif-
ferent levels of adversity.
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DDM Model Fit Assessments

Parameter recovery

The results of our parameter recovery analyses are summarised in Table A1.3 (pre-
registered approach) and Table A1.2 (updated approach). Using the preregistered ap-
proach (simulating the same number of trials as the real data), four out of 16 correla-
tions fell below the pre-specified cut-off (See Table A1.3). Specifically, this was the case
for four out of 16 correlations: accuracies for Flanker (.79), Attention Shifting (.73),
Processing Speed (.65), and the 75th percentile of RTs for Mental Rotation (.76). In an
updated procedure, we increased the number of simulated trials to 100 per task. In
these analyses, all correlations were above the .80 cut-off.

Thus, the updated simulation procedure was almost identical to the preregistered
procedure, outlined above. The only difference concerned the number of simulated tri-
als. In research with adult participants, it is standard to match the number of simulated
trials to the number of observed trials (Lewandowsky & Farrell, 2010). This rule of
thumb is arbitrary; researchers sometimes simulate thousands of trials in dedicated
parameter recovery studies. The only reason why they typically do not is because it is
often sufficient to match the number of observed trials. In our preregistered plan, we
followed the convention by matching the number of simulated trials to the number of
observed trials. However, in the adult literature, participants frequently complete sev-
eral dozen, if not hundreds, of trials. In hindsight, we did not sufficiently reflect on this
difference, given the lower number of trials per participant in this study involving chil-
dren. That is, while we followed the convention in the field, the number of simulated
trials was lower than is typically the case (because our study involved children), and
would also be very low in adult samples.

If the youth’s DDM parameters were not recovered accurately because the data
were too sparse, increasing the number of simulated trials should not improve these
correlations. In other words, if DDM parameters contained a lot of measurement noise
or were biased, the correlation between real and simulated RTs/accuracy would re-
main low even if we simulated more trials. However, that is not what we found. Instead,
all correlations were above the .80 cut-off. Many even surpassed .90. This indicated
that our data quality was good—the lower correlations observed in the preregistered
analysis were solely due to the low number of simulated trials—and that we success-
fully recovered DDM parameters once addressing this issue.
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Table A1.2. Simulation-based model fit assessment comparing observed and predicted data using 100 simulated
trials (accuracy, 25th, 50th, 75th percentile).

Task Condition E’gtr'?:entile E’%tr'gentile E’%tr'gentile Accuracy R?

Flanker - Model 1 congruent 0,96 0.96 0.95 0.53 1.008
Flanker - Model 1 incongruent 0.94 0.95 0.94 0.93 1.008
Flanker - Model 2 0.96 0.96 0.96 0.90 1.011
Mental Rotation - Model 1 0.90 0.88 0.84 0.94 1.010
Mental Rotation - Model 2 087 088 0.86 0.96 1.010
Attention Shifting - Model 1 repeat 0.80 0.82 0.80 -0.00 1.009
Attention Shifting - Model 1 switch 082 082 0.83 0.46 1.009
Attention Shifting - Model 2 0.94 0.95 0.95 0.88 1.008
Processing Speed - Model 1 092 0.94 0.93 0.81 1.013
Processing Speed - Model 2 0.94 0.94 0.93 0.80 1.011

Note: The models that were selected for inclusion in the primary analyses are printed in bold.

Table A1.3. Simulation-based model fit assessment comparing observed and predicted data using the same
number of observed and simulated trials (accuracy, 25th, 50th, 75th percentile).

Task Condition E’%tr'?:entile E’%tr'gentile E’%tr'gentile Accuracy R?

Flanker - Model 1 congruent  0.88 0.88 0.87 0.30 1.008
Flanker - Model 1 incongruent 0.88 0.89 0.88 0.88 1.008
Flanker - Model 2 0.91 0.92 0.93 0.79 1.011
Mental Rotation - Model 1 0.84 0.80 0.76 0.87 1.010
Attention Shifting - Model 1 repeat 072 074 0.73 -0.01 1.009
Attention Shifting - Model 1 switch 089 067 0.68 0.26 1.009
Attention Shifting - Model 2 0.91 0.91 0.90 0.73 1.008
Processing Speed - Model 1 0.88 0.89 0.88 0.66 1.013
Processing Speed - Model 2 0.90 0.89 0.88 0.65 1.011

Note: The models that were selected for inclusion in the primary analyses are printed in bold.

As planned, we explored whether model fit would be relatively worse at different
levels of the two measures of adversity. Table A1.4 and A1.5 present correlations be-
tween observed and predicted RTs and accuracy at different levels of adversity. Model
fit was high for all tasks across all levels of adversity, and there were no indications for
any meaningful differences.
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Table A1.4. Simulation-based model fit assessment at different levels of material deprivation comparing
observed and predicted data using 100 simulated trials (accuracy, 25th, 50th, 75th percentile).

Task yeaphr?i{:gtlion E’tsetr'-é:entile E%t}?:enti le Z’%trt'centile Accuracy
Flanker - Model 2 =-18D 0.97 0.97 0.96 0.82
Flanker - Model 2 = 15D 0.95 0.95 0.96 0.93
Flanker - Model 2 -1SDzx <= 1SD 0.96 0.96 0.96 0.87
lMental Rotation - Model 1 =-15D 0.88 0.86 0.82 0.94
lMental Rotation - Model 1 -1SD zx=1SD 0.89 0.88 0.84 0.94
Mental Rotation - Model 1 = 18D 0.92 0.89 0.85 0.93
Attention Shifting - Model 2 < -18D 0.94 0.95 0.95 0.85
Attention Shifting - Model 2 = 15D 0.93 0.94 0.94 0.90
Attention Shifting - Model 2 -1SDzx<1SD 0.94 0.95 0.95 0.86
Processing Speed - Model 2 < -1SD 0.95 0.96 0.94 0.82
Processing Speed - Model 2 -1SDzx=1SD 0.94 0.94 0.93 0.79
Processing Speed - Model 2 = 15D 0.93 0.93 0.93 0.81

Table A1.5. Simulation-based model fit assessment at different levels of household threat comparing cbserved
and predicted data using 100 simulated trials (accuracy, 25th, 50th, 75th percentile).

Task Household threat B2Meniie  Pltentie  Pagentie  Accuracy
Flanker - Model 2 <-18D 0.96 0.96 0.96 0.83
Flanker - Model 2 > 18D 0.96 0.96 0.95 0.92
Flanker - Model 2 -1SDzx=1SD 096 0.96 0.96 0.88
Mental Rotation - Model 1 <-18D 0.88 0.87 0.82 0.94
Mental Rotation - Model 1 -18D=zx=1SD 090 0.88 0.84 0.94
Mental Rotation - Model 1 > 18D 0.90 0.88 0.85 0.94
Attention Shifting - Model2 < -1SD 0.95 0.95 0.95 0.84
Attention Shifting - Medel 2 = 15D 0.94 0.94 0.94 0.86
Attention Shifting - Model2 183Dz x= 13D 094 0.95 0.95 0.88
Processing Speed - Model 2 < -1SD 0.94 0.94 0.94 0.79
Processing Speed - Model 2 -1SD=zx=15D 094 0.94 0.93 0.80
Processing Speed - Model 2 = 15D 093 0.93 0.93 0.81

For the Processing Speed Task, we found a high degree of Kurtosis in the left-hand
tail of the non-decision time distribution. This tail consisted of participants with the
lowest RTs (between 0.3s and ~15s). Although overall accuracy on the Processing Speed
Task was very high (96.41%), overall accuracy for RTs < 1s was below chance, with ac-
curacy increasing above change starting at 1s. Therefore, we decided to remove RTs <
1s (0.1% of trials) and refit the model, which solved the kurtosis in non-decision times.
Recovery of RTs was above the cut-off of .80 for each quantile. Thus, we selected this
model for the main analyses.

Model convergence
Figure A1.13-A1.16 show model convergence for each task. All models converged nor-
mally.

Parameter distributions
Figure A1.17-A1.20 show the distributions of DDM parameters for each task.
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Figure A1.13. Convergence of the final model for the Mental Rotation Task. Plots should resemble
a ‘fat, hairy caterpillar’.
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Figure A1.14. Convergence of the final model for the Inhibition Task. Plots should resemble a ‘fat,
hairy caterpillar’.

SEM Fit
The factor loadings and residual variances of the full test model are presented in Table
A1.6. Table A1.7 presents the correlations between latent variables in the model.

Boundary separation Drift rate Non-decision time .
] 0336 Chain
2131 1.51
0.334 1 —
2.121 1.50 1 0.332 1
2111 1.491 0.3301 — 2
2.101 1.48 1 0.328 4
T T T T T T T T T T T T T T T 3
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Figure A1.15. Convergence of the final model for the Attention Shifting Task. Plots should resemble
a ‘fat, hairy caterpillar’.
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Figure A1.16. Convergence of the final model for the Processing Speed Task. Plots should resemble

a ‘fat, hairy caterpillar’.
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Figure A1.17. Parameter distributions in the final model of the Mental Rotation Task.
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Figure A1.18. Parameter distributions in the final model of the Inhibition Task.
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Figure A1.19. Parameter distributions in the final model of the Attention Shifting Task.
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Figure A1.20. Parameter distributions in the final model of the Processing Speed Task.
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Table A1.6. Factor loadings and unstandardized residual variances in the test set,

l(EueraTaantgard ized) SE £ p Etsatrl':gg%ized
Factor loadings
Task-general drift rate
Processing Speed Task 1.00 0.00 0.52
Aftention Shifting Task 1.19 0.04 2943 0.000 063
Mental Rotation Task 0.51 0.03 18.37 0.000 0.27
Inhibition Task 1.22 0.04 29.76 0.000 0.65
Task-general boundary separation
Processing Speed Task 1.00 0.00 0.55
Attention Shifting Task 1.44 0.04 38.19 0.000 0.80
Mental Rotation Task 0.28 0.02 1197 0.000 0.15
Inhibition Task 1.14 0.03 37.63 0.000 0.63
Task-general non-decision time
Processing Speed Task 1.00 0.00 0.45
Attention Shifting Task 1.46 0.05 27.28 0.000 0.66
Mental Rotation Task 0.67 0.03 19.49 0.000 0.30
Inhibition Task 1.53 0.05 29.78 0.000 0.70
Residual variances
Task-specific drift rate
Inhibition Task 0.55 0.01 43.01 0.000
Attention Shifting Task 0.52 0.01 4261 0.000
Mental Rotation Task 0.82 0.01 64.81 0.000
Processing Speed Task 0.71 0.01 5558 0.000
Task-specific boundary separation
Inhibition Task 0.61 0.01 53.53 0.000
Attention Shifting Task 0.39 0.01 31.86 0.000
Mental Rotation Task 0.95 0.01 66.89 0.000
Processing Speed Task 0.69 0.01 58.55 0.000
Task-specific non-decision time
Inhibition Task 0.56 0.01 4413 0.000
Attention Shifting Task 0.61 0.01 44.01 0.000
Mental Rotation Task 0.86 0.01 64.90 0.000
Processing Speed Task 0.78 0.01 6072 0.000
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Table A1.7. Correlations between |latent task-general and

task-specific factors in the test set.

Correlation

Task-general

Drift rate - Boundary separation -0.575%**

Drift rate - Non-decision time -0.046*

Boundary separation - Non-decision time  0.710***
Task-specific Inhibition Task

Drift rate - Boundary separation -0.098***

Drift rate - Non-decision time 0.019

Boundary separation - Non-decision time  0.340***
Task-specific Attention Shifting Task

Drift rate - Boundary separation -0.106**

Drift rate - Non-decision time 0.030*

Boundary separation - Non-decision time ~ -0.228***
Task-specific Mental Rotation Task

Drift rate - Boundary separation 0.305"

Drift rate - Non-decision time 0.230***

Boundary separation - Non-decision time  0.102***
Task-specific Processing Speed Task

Drift rate - Boundary separation -0.125%

Drift rate - Non-decision time 0.052***

Boundary separation - Non-decision time  -0.097***










Appendix 2

Appendix 2 - Chapter 3

Section |. Descriptive statistics of adversity measures

Figures A2.1-A2.3 present histograms of each separate adversity measure, as well as
the composite adversity measures used in the analyses. See the main text for more in-
formation on how the composites were calculated.

Section 2. Additional information on cognitive tasks

Distributions of response times and error rates
Figure A2.4 and A2.5 show the distributions of mean response times and mean error
rate for each cognitive task.

Condition manipulation checks

Table A2.1 presents manipulation checks for response times for the inhibition and at-
tention-shifting tasks. The manipulation checks were based on mean log-transformed
response times using paired-sample t-tests. For each task, we tested whether there was
a significant difference in mean log-transformed response time between the congruent
(repeat) condition and the incongruent (switch) condition. All tasks showed a signifi-
cant difference in the expected direction, with participants on average being faster on
the congruent (repeat) condition compared to the incongruent (switch) condition (all
ps <.001).
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of your household at this moment?

Figure A2.1. Histograms of material deprivation measures
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Figure A2.2. Histograms of threat measures
Table A2.1. Log-transformed response time
differences across conditions for each task.
Task Estimate t p
Flanker task 0.14 51,96 <.001
Simon task 0.02 7.27  <.001
Color-shape task  0.07 19.58 < .001
Global-local task  0.04 886 <.001
Animacy-size task 0.16 40.65 <.001
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Figure A2.3. Histograms of threat measures
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Figure A2.4. Distributions of response times for all tasks.

Split-half reliability

For each cognitive task, we calculated split-half reliabilities using the splithalf pack-
age (Parsons, 2021). We calculated split-half reliabilities for mean response times and
error rates, separately for each condition (see Table A2.2 and Table A2.3). The split-
half reliability of mean response times was high across all tasks and conditions. For
error rates, the reliability estimates were generally lower, which is likely due to ceiling

effects (see also Figure A2.5).

Table A2.2. Split-half reliabilities of mean response times for all cognitive tasks.

Split-half reliability

Spearman-Brown corrected

Task Congruenta‘Repeat IncongruenUSwItch CongruenURepeat IncongruenUSwItch
Flanker task 0.91[0.86,0.93]  0.90 [0.87, 0.93] 0.95[0.93,0.96]  0.95[0.93, 0.96]
Simon task 0.88[0.83,0.92]  0.89[0.83, 0.92] 0.94[0.91,0.96]  0.94 [0.90, 0.96]
Color-shape task  0.83[0.81,0.85]  0.86 [0.84, 0.87] 0.911[0.89,0.92]  0.92[0.91, 0.93]
Animacy-size task  0.82[0.79, 0.84]  0.86 [0.85, 0.88] 0.90[0.89,0.91]  0.93[0.92, 0.93]
Global-local task ~ 0.82[0.79, 0.85]  0.82 [0.78, 0.86] 0.90[0.88,0.92)  0.90 [0.88, 0.92]
Posner task 0.95 [0.94, 0.95) 0.97 [0.97, 0.98]
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Figure A2.5. Distributions of error rates for all tasks.

Table A2.3. Split-half reliabilities of error rates for all cognitive tasks.

Split-half reliability

Spearman-Brown corrected

Task Congruenta’Repeat IncongruenUSwItch CongruenURepeat IncongruenUSwItch
Flanker task 0.57 [0.40, 0.65]  0.64 [0.60, 0.69] 0.72[0.58,0.79]  0.78 [0.75, 0.81]
Simon task 0.52[0.46,0.57]  0.48[0.44, 0.53] 0.68[0.63,0.72]  0.65[0.67, 0.69]
Color-shape task  0.74[0.70, 0.77]  0.46 [0.41, 0.50] 0.85[0.82,0.87)  0.63[0.58, 0.67]
Animacy-size task  0.67 [0.62, 0.71]  0.59 [0.55, 0.63] 0.80[0.77,0.83)  0.74[0.71, 0.77]
Global-local task ~ 0.67 [0.63, 0.71]  0.58 [0.54, 0.62] 0.80[0.77,0.83)  0.73[0.70, 0.77]
Posner task 0.42 [0.37, 0.46) 0.59 [0.54, 0.63]

Section 3. Drift Diffusion Modeling

Model convergence
Figures A2.6-A2.11 present the convergence of MCMC chains of the Hierarchical Drift
Diffusion Models for all tasks. The figures should resemble a “fat, hairy caterpillar”,

which was the case for all tasks.

In addition, we calculated the R” statistic (also known as the Gelman-Rubin sta-
tistic) (Gelman & Rubin, 1992). The R” calculates the ratio between the variation be-
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Figure A2.6. Trace convergence across three chains for the Flanker Task.

tween MCMC chains and the variation within MCMC chains. A general guideline is that
R” values should be smaller than 1.1. All R* values are presented in Table A2.4 below.

Simulation-based model fit assessment

Table A2.4 presents simulation-based model fit assessments for all tasks. The simula-
tion procedure was as follows. First, we used the DDM parameter estimates for each
participant and used them to simulate response times and accuracy data (100 trials
per participant). Then, we computed correlations between the simulated and observed
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Figure A2.7. Trace convergence across three chains for the Simon Task.
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Figure A2.8. Trace convergence across three chains for the Color-shape Task.

response times and accuracies. In the case of response times, we did so separately at
the 25th, 50th, and 75th percentile. In the case of accuracy, we looked at mean accuracy.
All correlations were > .89, indicating good model fit.
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Figure A2.9. Trace convergence across three chains for the Global-local Task.
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Figure A2.10. Trace convergence across three chains for the Animacy-size Task.

Table A2.4. Model fit assessment

Task Condion  Bliodntle  Blrcentle  Parcnle  Accuracy  R*
Flanker task Congruent  0.98 0.98 0.97 0.89 1.011
Flanker task Incongruent 0.97 0.97 0.98 0.94 1.011
Simon task Congruent  0.97 0.97 0.97 0.9 1.003
Simon task Incongruent 0.95 0.97 0.97 0.92 1.003
Color-shape task  Repeat 0.97 0.96 0.97 0.98 1.006
Color-shape task  Switch 0.96 0.97 0.97 0.95 1.006
Animacy-size task Repeat 0.96 0.96 0.96 0.98 1.002
Animacy-size task Switch 0.95 0.96 0.96 0.97 1.002
Global-local task  Repeat 0.95 0.96 0.96 0.98 1.001
Global-local task ~ Switch 0.95 0.96 0.96 0.97 1.001
Posner task 0.97 0.98 0.98 0.89 1.002
Note: Simulation-based model fit assessment compared observed and predicted data using 100

simu

lated trials (accuracy, 25th, 50th, 75th percentile). In addition, We calculated R* values, which

should be below 1.1 to indicate adequate chain convergence.
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Figure A2.11. Trace convergence across three chains for the Posner Task.
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Section 4. Effects of environmental variables
Table A2.5 presents effects of environmental noise and mean-centered state anxiety
on Drift Diffusion parameters. Effects of environmental noise were mostly small non-
significant. Mean-centered differences in state anxiety were negatively associated with
drift rates across all tasks. In sessions where participants were more anxious than av-
erage, their drift rates across all tasks were lower.
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Table A2.6 presents Spearman correlations between preregistered and non-preregis-
tered adversity measures with environmental noise and mean state anxiety. Note that
A2.6 includes mean state anxiety, whereas the analyses (and Table A2.5) include the
difference from the grand mean in specific testing sessions.

Table A2.6. Bivarate correlations between adversity measures,
environmental noise, and mean state anxiety.

Variable 1 2 3 4 5 6
1. Deprivation in adulthood -

2. Threat in aduldhood 0.27 -

3. Childhood threat 019 023 -

4. Childhood deprivation 0.08 0.32 048 -

5. Environmental noise 0.05 0.17 0.07 0.14 -

6. State anxiety 0,09 021 0.14 0.13 0.08 -

Section 5. Indirect effects of confounders

Table A2.7 summarizes the indirect effects of confounders in the confirmatory models:
age, education, sex, childhood adversity, and, in the case of threat as dependent vari-
able, material deprivation. As explained in the section on confounders in the main arti-
cle, we assume that these confounders are common causes of both adversity exposure
in adulthood (the independent variable) and cognitive processes (the dependent vari-
able). This means that the regression coefficients in Table A2.7 and A2.8 should not be
interpreted as direct effects; rather, they should be interpreted as indirect effects (i.e.,
the effect at mean levels of adversity exposure).

For both threat and deprivation in adulthood, we found a negative indirect effect
of age on task-general drift rate, a positive indirect effect of age on task-general bound-
ary separation, and a positive indirect of age on task-general non-decision time. Thus,
older adults with average levels of adversity exposure in adulthood processed infor-
mation more slowly across tasks, were generally more cautious, and were generally
slower at encoding stimuli and/or executing responses. In addition, childhood adver-
sity had a negative indirect effect on task-general drift rate. People with more exposure
to childhood adversity, at average levels of adversity exposure in adulthood, processed
information more slowly across tasks. Finally, we found a negative indirect effect of ed-
ucation on task-general drift rate, but not on task-general boundary separation or non-
decision time. People with a higher completed education, at average levels of adversity
exposure in adulthood, processed information faster across tasks. None of the other
indirect effects were significant.
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Table A2.7. Standardized indirect effects of confounders in the confirmatory models.

Threat in adulthood Deprivation in adulthood

Confounder B SE 95%ClI p B SE 95% Cl p
Task-general drift rate

Material deprivation -0.06 0.05 [-0.16,0.04] .241

Age -0.12 0.04 [-0.21,-0.04] .003 -0.10 0.03 [-0.16,-0.03] .003

Sex 0.04 0.03 [-0.01,0.09] .130 0.01 002 [-0.03,005] .623

Childhood adversity -0.19 0.04 [-0.27,-0.10] <.001 -0.23 004 [-0.31,-0.18] <.001

Education 014 004 [007,021] <.001
Task-general boundary separation

Material deprivation 0.07 0.04 [-0.02,015] 137

Age 0.37 0.04 [0.29,045] =001 042 003 [0.36,048] <.001

Sex -0.00 0.03 [-0.05,0.035] .854 -0.00 002 [-0.04,004] .868

Childhood adversity -0.00 0.05 [-0.09,0.09] .994 -0.03 0.04 [-0.11,0.04] .394

Education -0.03 0.04 [-0.10,0.05] .508
Task-general non-decision time

Material deprivation 0.01 0.04 [-0.08,0.10] .841

Age 0.37 0.04 [0.29,045] <.001 0.39 0.03 [0.32,046] <.001

Sex 0.01 0.03 [-0.04,0.08] .605 0.01 0.02 [-0.03, 005 .507

Childhood adversity -0.04 0.05 [-0.14,0.05 .351 -0.05 004 [-0.12,003] .216

Education -0.00 004 [-0.08,0.08 .923

Table A2.8 summarizes the indirect effects of confounders in the exploratory mod-
els: sex, and, in the case of childhood threat as dependent variable, childhood material
deprivation. Childhood exposure to deprivation had a negative indirect effect on task-
general drift rate and task-general boundary separation. People with more exposure
to childhood deprivation, at average levels of childhood threat, processed information
more slowly across tasks, and were generally more cautious. Sex did not have an indi-
rect effect on either childhood threat or childhood deprivation.

Table A2.8. Standardized indirect effects of confounders in the exploratory models of childhood adversity.

Childhood threat Childhood deprivation

Caonfounder B SE  95% CI p B SE  95%ClI p
Task-general drift rate

Childhood deprivation -0.18 0.04 [-0.26,-0.10] =.001

Sex 0.01 0.02 [-0.03,0.05] .661 0.01 0.02 [-0.03,0.08] .579
Task-general boundary separation

Childhood deprivation 012 0.04 [0.04,020] .002

Sex -0.01 0.02 [-0.05,0.04] .725 -0.01 0.02 [-0.05,0.04] .770
Task-general non-decision time

Childhood deprivation 0.06 0.04 [-0.02,0.14] .134

Sex 0.01 0.02 [-0.030.05 .629 0.01 0.02 [-0.03,0.05] 610
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Appendix 3 - Chapter 4

Section |. Descriptions of exploratory measures
Current state, poverty exposure, impulsivity, future orientation, and depressive symp-
toms were collected in all three studies. Attentional style was collected in Study 2 only.

Current state

We assessed state anxiety during the experiment using the state subscale of the State-
Trait Anxiety Inventory (STAI-S; Spielberger et al., 1999). The STAI-S contains 20 short
items measuring current anxiety (e.g., “I feel tense”). Participants rated each item on
a scale of 1 (not at all) to 4 (very much so). An overall state anxiety variable was com-
puted by averaging across the 20 unweighted items.

In addition, participants answered five questions relating to specific states: “Are
you currently sick?” (rated as yes or no); “Have you eaten a full meal today?” (rated as
yes or no); “How hungry do you feel right now?” (rated from 1 (not at all) to 5 (very
hungry)); “How well did you sleep last night?” (rated from 1 (very poorly) to 5 (very
well)); “How rested or refreshed did you feel when you woke up this morning?” (rated
from 1 (not at all) to 5 (very rested)). We computed an overall sleep deprivation com-
posite by standardizing and averaging across the two unweighted sleep-related items.

Poverty exposure

Participants’ perceived level of resource scarcity before age 13 was measured using
seven items (e.g., “Your family had enough money to afford the kind of home you all
needed”). Participants rated each item on a scale from 1 (never true) to 5 (very often
true). Scores for the first six items were reverse coded so that higher scores indicated
more perceived resource scarcity. The items were averaged together to create an un-
weighted composite scale.

In addition, we measured several indicators of objective SES before age 13. First,
participants separately indicated the highest education of their mother and father on
an 8-point scale: ‘some high school’, ‘GED’, ‘high school diploma’, ‘some college but no
college degree’, associate’s degree’, ‘bachelor’s degree’, ‘master’s degree’, or ‘doctoral
or lab degree’. The mother and father education level were averaged to create an over-
all unweighted parental education composite. Participants also indicated their family’s
household income before age 13 on a 6-point scale: ‘less than $ 25k/year’, ‘$25k - $49k/
year, $50 - $74k/year’, ‘$75 - $99k/year’, ‘$100 - $149k/year’, ‘more than $150k/year’.
Scores were reverse coded so that higher scores indicated higher levels of poverty.

We created a composite score of poverty exposure before age 13 by averaging to-

gether the standardized scores of perceived level of resource scarcity, overall parental
education, and household income.
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Impulsivity

We assessed impulsivity with the Motor Impulsivity subscale of the Barrett Impulsivity
Scale (BIS short form; Patton et al., 1995; Spinella, 2007). The Motor Impulsivity sub-
scale of the BIS consists of five items (e.g., “I do things without thinking”). We did not
include the Non-planning subscale because it overlapped substantially with the Future
Orientation Scale described below. In addition, we did not include the Attention impul-
sivity subscale because it included items which we deemed to be mostly irrelevant for
our target population (e.g., “I ‘squirm’ at plays or lectures”). We changed the original 4-
point rating scale (rarely/never to almost always) to a 5-point rating scale ranging from
1 (never true) to 5 (very often true). An overall impulsivity variable was computed by
averaging the five unweighted items.

Future Orientation

We assessed future orientation with an adapted version of the Future Orientation Scale
(FOS; Steinberg et al., 2009). The original scale consists of 15 sets of opposing items
separated by “BUT” (e.g., “Some people like to plan things out one step at a time BUT
other people like to jump right into things without planning them out beforehand”).
Participants first choose the item that best matches their general preference, and then
indicate whether the statement is “really true” or “somewhat true”. We adapted this
format in a couple of ways. First, we converted the two statements per item to a sin-
gle statement by picking the statements in the original right-hand column. Second, we
adapted the 15 statements from a third-person to a first-person format. These changes
were made in an attempt to reduce the cognitive load of the items. We worried that
people with less formal education or who were sitting in a noisier environment would
struggle with the length of the original items.

In addition, item 8 of the original scale (“[...] other people would rather spend their
money right away on something fun than save it for a rainy day”) was changed to “I'd
rather spend money right away than save it for a rainy day” (i.e., dropping the phrase
“on something fun”) to make it more general with regard to the thing that money is
spent on. For people from adversity, spending money right now instead of saving it for
the future might often be born out of necessity (e.g., having just enough money for food
and shelter; being in debt) instead of a failure to delay gratification. Finally, the rating
scale was adapted from the original 4-point scale (ranging from really true for the left-
hand statement to really true for the right-hand statement) to a 5-point scale ranging
from 1 (never true) to 5 (very often true). An overall future orientation variable was
computed by averaging the 15 unweighted items.

Depressive symptoms

We assessed depressive symptoms during the past week using the Center for Epidemi-
ologic Studies Depression Scale (CESD; Radloff, 1977). The scale consists of 20 items
(e.g., “I do things without thinking”). Participants rate each item on a scale of 1 (rarely
or none of the time (less than 1 day)) to 4 (most or all of the time (5-7 days)). An overall
depression variable was computed by averaging the 20 unweighted items.
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Attentional style

We measured attentional style using the Attentional Style Questionnaire (ASQ; Van Cal-
ster et al,, 2018). The ASQ measures self-reported attentional style, with seven items
asking about the participant’s propensity for internally oriented attention (e.g., “Dur-
ing an activity, unrelated mmental images and thoughts come to my mind”) and seven
items about externally oriented attention (e.g., “I am easily drawn to new stimuli (for
example, voices of people passing by, as sound in the house, ...) that are not relevant to
a task [ am doing”). Where necessary, items were recoded in such a way that they re-
flected distractibility by internal and external stimuli, respectively, with higher scores
reflecting a higher degree of distractibility. We computed unweighted averages sepa-
rately for internally oriented attention and externally oriented attention.

Section 2. Exploratory analyses

Consistency in unpredictability measures

Pilot. The EFA yielded five factors based on parallel analysis (see Table A3.1). Based
on their contents, we labelled these factors (1) Daily unpredictability; (2) Household
routine; (3) Spatial unpredictability; (4) Chaos/clutter; (5) Social unpredictability.
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Figure A3.1. Comparison of factor loadings of unpredictability items in the Pilot and Study 1.

Study 1. Similar to the Pilot, the EFA yielded five factors based on parallel analysis. We
plotted the factor loadings of each factor in the Pilot against those in Study 1 to investi-
gate their correspondence (See Figure A3.1). In general, individual items largely loaded
on the same factors, and the sizes of their loadings were also comparable. The items
from the CHAOS were found to be most unstable, with many showing aloading <.32 in
one of the two studies.

Bivariate correlations between future orientation and impulsivity with attention
tasks

Table A3.2 shows bivariate correlations between self-reported depression, impulsivity,
future orientation, and SES with each of the Flanker SSP parameters and the Global-
Local drift rate difference. Participants who reported more depressive symptoms had
a lower strength of perceptual input. Participants who reported more impulsivity had
a lower strength of perceptual input, higher interference, as well as a more holistic
processing style. Participants who were more future oriented had a higher strength of
perceptual input and a more detail-oriented processing style, without an association
with interference.
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Table A3.3. Bivariate correlations between exploratory measures and SSP parameters.

Variable 1 2 3 4 5 6 7 8 9 10
1. Depressicn - 1527 1527 545 545 1527 1827 1527 1527 445
2. Impulsivity 0.37** - 1527 545 545 1527 1827 1527 1527 445
3. Future orientation 017 051 545 545 1527 1527 1527 1527 445
4. Internal attention style 0.49*** D.46** 0.18*" . 545 545 545 545 545 445
5. External attention style 0.40%* 0.30** -0.12* 0.69*** - 545 545 545 545 445
6. Flanker - Perceptual input -0.06* -0.07* 010" -0.04 -002 - 1527 1527 1527 445
7. Flanker - Interference 0.04 007 -0.04 007 007 009 . 1527 1527 445
8. Flanker - boundary separation -0.00  0.01 0.03 0.01 0.02 039" 005 - 1527 445
9, Flanker - Non-decision time 003 002 -0.02 -0.05 -005 026" .003 s0.50" . 445
10. Global-Local - Drift rate difference 0.01 0.11* -0.12* 007 006 -013 -001 001 003
Note:*=p< .05 =p< .01, = p< 001, The upper diagonal presents sample sizes for each comparison.

Section 3. Model fit

Pilot

Cueing and Change Detection Task. In our initial, preregistered approach, DDM mod-
els for the Cueing and Change Detection Task were fit with the fast-dm-30 software
(Voss et al., 2015) using maximum likelihood (ML) estimation. For both tasks, we
started out with a model that freely estimated all parameters, and then fit additional
models with an increasing number of constrained parameters. We compared model fit
using the Bayesian information criterion (BIC), for which smaller values indicate better
fit. For the Change Detection Task, the most simple model provided the best fit. This
model freely estimated the drift rate, non-decision time, and boundary separation, and
fixed all other parameters.

For the Cued Attention Task, three models provided comparable model fit. How-
ever, all three models showed estimation problems, especially with regard to the
boundary separation. Specifically, boundary separation estimates for several partici-
pants ended up at an upper boundary of 10, indicating that they were not recovered
well (see Figure A3.2). Based on subsequent external input, we fit an additional model
using Kolmogorov-Smirnov (KS) estimation instead of ML estimation, additionally es-
timating the inter-trial variability parameter of the non-decision time. This improved
parameter estimation (see Figure A3.4).

Finally, we switched to estimation using Hierarchical Bayesian DDM (HDDM) for
our final analyses. The main reason for this step was that although KS estimation
seemed to work well, we had fewer trials than is typically recommended for this esti-
mation technique (Lerche et al.,, 2017). An advantage of HDDM is that it uses group-
level estimates to inform and constrain individual-level estimates. This is especially
useful in cases such as ours, where we have a large sample size but relatively few trials
per participant.

The HDDM models were fit using the runjags package (Denwood, 2016), using
code from D. ]. Johnson et al. (2017). All models were fit using three Markov Chain
Monte Carlo (MCMC) chains. Each of these chains started with 2,000 burn-in samples,
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Figure A3.2. Distributions of Drift Diffusion Model parameters for the Cued Attention Task using

Maximum likelihood estimation.

followed by 10,000 additional samples. To decrease the total size of the model, every
10th sample was retained, resulting in a posterior sample of 3,000 samples.

Model convergence was assessed (1) by visually inspecting the traces, which
should not contain any drifts or large jumps (see Figure A3.4 and Figure A3.7); (2)
through simulation. Specifically, we used each participant’'s DDM estimates to simulate

a t- cued t - neutral
60 1 60 1 60 -
40 1 401 401
201 20 201
e = -~ 0%, ==
= 0.5 1.0 1.5 2.0 03 04 05 06 0.7 03 04 05 06 07 08
3
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Figure A3.3. Distributions of Drift Diffusion Model parameters for the Cued Attention Task using

Kolmogorov-Smirnov estimation.
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Figure A3.4. Chain convergence for the Hierarchical Bayesion Drift Diffusion Model for the Cued
Attention Task. Plots should resemble a ‘fat, hairy catterpillar’.

100 RT and accuracy estimates (per condition). The distributions of the participant’s
true RTs and their simulated RTs were assessed through bivariate correlations at the
25th, 50th and 75th percentile (See Figure A3.5 and Figure A3.8). We made the same
comparison for mean accuracy levels (See Figure A3.6 and Figure A3.9).

Flanker. To fit the SSP model to the Flanker data, we followed recommendations
by Grange (2016). First, we searched for the optimal set of starting values. For each
participant, we used 50 sets of starting parameters with a variance of 20 for each, simu-
lating 1,000 trials. After finding the optimal starting values, we fit the final model based
on 50,000 simulated trials. Model fit was assessed through simulation. For each partic-
ipant, we simulated 50,000 trials. We then calculated correlations between observed
and simulated RTs at the 25th, 50th, and 75th percentile, as well as between observed
and simulated mean accuracy. As can be seen in Figure A3.10 and Figure A3.11, we ob-
served high agreement between observed and simulated RTs and accuracy rates.

Study 1

Model fit of the Flanker was done the same as in the Pilot. Figure A3.12 and Figure
A3.13 show the model fit based on simulated data. We found good model fit across all
three conditions, both for RTs as well as accuracy rates.

Study 2.

Flanker. Model fit of the Flanker was done the same as in the Pilot and Study 1. Figure
A3.14 and Figure A3.15 show the model fit based on simulated data. We found good
model fit, both for RTs as well as accuracy rates.
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Figure A3.5. Drift Diffusion parameter recovery for the Cued Attention Task comparing simulated
and recovered response times at the 25th, 50th and 75th percentile of response times.

Section 4. Deviations from preregistrations

In this section, we provide a numbered overview of the deviations from the preregis-
tration in each study.

Pilot

cued | | neutral

1.00 1
0.951
0.90 1
0.85 1
0.80 1
0.751

Recovered

0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00
Simulated

Figure A3.6. Drift Diffusion parameter recovery for the Cued Attention Task comparing simulated
and recovered accuracy rates.

236



1.44 1

1.40

1.46 1 M‘”h'u‘“ 1 v\ﬂ',m‘ i 0.96 k
1421 Wl Mu“lﬂ in'l‘le 093-

Appendix 3

Bound. sep. |

Drift rate |

Non-dec. time | Chain

0.87

|1 'Lhr“‘ il dadhaly 048
1 0.4

rwlﬂu."d by —
LIl mw,m.f

- 2

T T

0 250 500 750 1000

l\]“ rl\m 'M,M 0.461
0.45

0 250 500 750 1000

3

O 250 500 750 1000

Figure A3.7. Chain convergence for the Hierarchical Bayesion Drift Diffusion Model for the Change
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Figure A3.8. Drift Diffusion parameter recovery for the Change Detection Task comparing simu-
lated and recovered response times at the 25th, 50th and 75th percentile of response times.
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Figure A3.9. Drift Diffusion parameter recovery for the Change Detection Task comparing simu-
lated and recovered accuracy rates.
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Figure A3.10. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered response times at the 25th, 50th and 75th percentile of response times.

1. DDM estimation using Hierarchical Bayesian DDM instead of Maximum Likelihood es-
timation. The rational for this change is explained in more detail in section 3.

2. Focus on Flanker Interference instead of separate attention parameters. The SSP
model provides two parameters representing attentional processes: (1) the initial
attention width, and (2) the rate at which attention shrinks towards the central tar-
get. We had initially planned to analyze both parameters separately. However, after
analyzing the data from Study 1, we realized that the estimates of these two para-
meters separately were very unstable. We noticed this when plotting the within-
person estimates between conditions (standard, enhanced, and degraded) against
each other. Figure A3.16 provides an overview of these correlations for attentional
width, shrinking rate, interference, and, for illustrative purposes, the RT difference
score. We consider the comparison between the standard and enhanced condition
the most informative, as the stimuli in these conditions were most similar. The
within-person correlations between conditions of attentional width and shrinking
were very low. However, the correlations were substantially higher for interference
(which even outperformed the standard RT difference scores, as typically used in
traditional assessments). Thus, we decided to use the Interference estimate in our
analyses across all studies.

Study 1
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Figure A3.11. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered accuracy rates.

1. In our preregistration of Study 1, we preregistered four exploratory (hypothesis-
generating) aims, which were unrelated to the primary (hypothesis-driven) aims
described in the main manuscript. These were: (1) Investigating the factor struc-
ture of unpredictability measures and comparing it to the structure found in the
Pilot; (2) Exploring the role of state anxiety, hunger, and sleep deprivation as poten-
tial moderators of the relationship between adversity and attention performance;
(3) Exploring bivariate correlations between measures of adversity, attention, and
measures of temporal orientation; (4) Explore the correlation between current de-
pressive symptoms and retrospective measures of adversity. The results of aim 1 are
described in Section 2. Results of aim 2-4 are described in Section 2.

Study 2

1. Global-Local performance. In the original preregistration, we specified that we
would exclude participants who performed at chance on either the Flanker Task or
the Global-Local Task, which was defined as an accuracy of 59.4% or lower. However,
initial inspections of the Global-Local Task data showed that a substantial part of the
sample did not reach this cut-off, suggesting that the task was more difficult than
anticipated. Thus, we developed a more fine-grained approach (described below) in
an attempt to distinguish between 1) participants who did not understand the task
and 2) participants who understood the task, but found it difficult to perform well.
Given the assumptions of DDM, the first group would have to be excluded because
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Figure A3.12. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered response times at the 25th, 50th and 75th percentile of response times across the standard, en-

hanced, and degraded condition.
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Figure A3.13. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered accuracy rates across the standard, enhanced, and degraded condition.

they likely did not go through a process of information accumulation. However, the
model should be able to adequately fit the data of the second group.

The amended analysis approach for the Global-Local Task looked as follows: (1) Fit the
data to the cleaned data of the full sample, including participants who performed at
or below chance level (i.e., after trial-level exclusions but before case-wise exclusions);
(2) Based on recovered parameter estimates for each participant, simulate the same
number of trials (reaction times and accuracy) using the Rwiener package, separately
for Global and Local trials. (3) For each participant, calculate the 25th, 50th and 75th
quantile of both their real RTs and the simulated RTs. In addition, we calculate mean
accuracies based on the real and simulated data. (4) Compute standardized residuals
between the real and simulated data for RTs at each quantile and for accuracy. In case
of good fit, the residual should be close to zero. (5) Exclude the data of participants
with any standardized residual > 3.2 SD.

2. Multiverse analysis. In the preregistration, we planned to include three variables
as covariates that were previously featured as arbitrary exclusion decisions in the
multiverse specification: 1) whether or not participants rescaled the screen; 2)
whether or not participants exited fullscreen mode at some point during the tasks;
3) Whether or not participants experienced interruptions during the tasks. Our rea-
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Figure A3.14. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered response times at the 25th, 50th and 75th percentile of response times.
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Figure A3.15. Drift Diffusion parameter recovery for the Flanker comparing simulated and recov-
ered accuracy rates.
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soning was that these three factors were consistently found to have a large impact
on model results. However, we realized later on that adding these factors as covari-
ates was not a good approach from a causal inference standpoint. That is, it is more
likely that each of these factors added random noise to our estimates than that they
had a causal effect on the outcome. Therefore, we decided instead to include these
factors as arbitrary decisions in the multiverse analyses, similarly as the previous
two studies. This allowed for a coherent assessment of influential factors across all
three experiments.

Section 5. Multiverse analysis.

In this section, we provide additional results of the multiverse analyses. Specifically, we
report (1) the distributions of p-values across the multiverses and (2) influential data
cleaning decisions.

Pilot

Figure A3.17 and Figure A3.18 present p-distributions and the explained variance of
each data cleaning decision in the variation in effect sizes for the results presented in
Table 3 in the main text.

Study 1

Figure A3.19 and Figure A3.20 present p-distributions and the explained variance of
each data cleaning decision in the variation in effect sizes for the results presented in
Table 4 in the main text.

Figures A3.21-A24 present p-distributions and the explained variance of each data
cleaning decision in the variation in effect sizes for the results presented in Table 5 in
the main text.

Study 2

Figure A3.25 and Figure A3.26 present p-distributions and the explained variance of
each data cleaning decision in the variation in effect sizes for the results presented in
Figure 2 in the main text.

Figure A3.27 and Figure A3.28 present p-distributions and the explained variance

of each data cleaning decision in the variation in effect sizes for the results presented
in Figure 3 in the main text.
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Figure A3.17. Multiverse p-value distributions belonging to the analyses reported in Table 3 in the
main text. The dashed vertical line depicts the cut-off of .05. The percentages in the upper-right corners
are the percentage of statistically significant analyses in multiverse. Panel A: Cued Attention Task. Panel
B: Change Detection Task. Panel C: Flanker Task.
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Figure A3.18. Multiverse explained variance of each data cleaning decision belonging to the analy-
ses reported in Table 3 in the main text. Panel A: Cued Attention Task. Panel B: Change Detection Task.
Panel C: Flanker Task.
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Figure A3.19. Multiverse p-value distributions belonging to the analyses reported in Table 4 in the
main text. The dashed vertical line depicts the cut-off of .05. The percentages in the upper-right corners
are the percentage of statistically significant analyses in multiverse. Panel A: Analyses involving violence
exposure (hypothesis-driven). Panel B: Analyses involving unpredictability (exploratory).
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Figure A3.20. Multiverse explained variance of each data cleaning decision belonging to the analy-
ses reported in Table 4 in the main text. Panel A: Analyses involving violence exposure (hypothesis-dri-

ven). Panel B: Analyses involving unpredictability (exploratory).
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Figure A3.21. Multiverse p-value distributions belonging to the interaction effects involving vio-
lence exposure reported in Table 5 in the main text. The dashed vertical line depicts the cut-off of .05. The
percentages in the upper-right corners are the percentage of statistically significant analyses in multi-
verse. Panel A: Analyses comparing the enhanced condition to the standard condition. Panel B: Analyses
comparing the degraded condition to the standard condition.
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Figure A3.22. Multiverse explained variance of each data cleaning decision belonging to the inter-
action effects involving violence exposure reported in Table 5 in the main text. Panel A: Analyses com-
paring the enhanced condition to the standard condition. Panel B: Analyses comparing the degraded

condition to the standard condition.
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Figure A3.23. Multiverse p-value distributions belonging to the interaction effects involving un-

predictability reported in Table 5 in the main text. The dashed vertical line depicts the cut-off of .05. The
percentages in the upper-right corners are the percentage of statistically significant analyses in multi-
verse. Panel A: Analyses comparing the enhanced condition to the standard condition. Panel B: Analyses
comparing the degraded condition to the standard condition.
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Figure A3.24. Multiverse explained variance of each data cleaning decision belonging to the inter-
action effects involving unpredictability reported in Table 5 in the main text. Panel A: Analyses compar-
ing the enhanced condition to the standard condition. Panel B: Analyses comparing the degraded condi-
tion to the standard condition.
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Figure A3.25. Multiverse p-value distributions belonging to the associations between violence ex-

posure with perceptual input and interference in the Pilot, Study 1, Study 2, and pooled across all studies,
as reported in Figure 2 in the main text.
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Figure A3.26. Multiverse explained variance of each data cleaning decision belonging to the asso-
ciations between violence exposure with perceptual input and interference in the Pilot, Study 1, Study
2, and pooled across all studies, as reported in Figure 2 in the main text.
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Figure A3.27. Multiverse p-value distributions belonging to the associations between unpre-
dictability with perceptual input and interference in the Pilot, Study 1, Study 2, and pooled across all

studies, as reported in Figure 3 in the main text.
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Figure A3.28. Multiverse explained variance of each data cleaning decision belonging to the asso-
ciations between unpredictability with perceptual input and interference in the Pilot, Study 1, Study 2,
and pooled across all studies, as reported in Figure 3 in the main text.
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Appendix 4 - Chapter 5

Section |. Pilot study

Atotal of 99 Dutch adolescents (mean age = 29.4,SD = 6.9, range = [20, 53]) participated
in the Pilot study via Prolific. The main goal of the Pilot study was to obtain feedback on
the tasks (e.g., difficulty, clarity of instructions), and to explore bivariate correlations
between the measures. Participants completed the same tasks as in the main study:
(1) Operation Span Task, (2) Rotation Span Task, and (3) Binding-Updating Task. The
Rotation Span Task was administered in a second session, and was completed by a sub-
sample of 50 participants. All three tasks followed the exact same procedure as in the
main study.

In addition, participants completed measures of material deprivation, neighbor-
hood threat, and unpredictability. These measures differed from the more comprehen-
sive measures used in the main study, and were included to obtain quick, descriptive
estimates. Material deprivation was measured using seven items about perceived level
of available resources. Unpredictability was measured using a scale of perceived un-
predictability (Mittal et al.,, 2015; Young et al., 2018). Neighborhood violence exposure
was measured using the Neighborhood Violence Scale (NVS; Frankenhuis, Vries, et al,,
2020; Frankenhuis & Bijlstra, 2018) as well as two items measuring involvement in
fights. Participants responded to items of all questionnaires on a scale of 1 (never true)
to 5 (very often true). Finally, participants provided feedback on the difficulty of the
tasks and the clarity of the task instructions.

Pilot data were collected sequentially to allow for intermediate changes to instruc-
tions based on participants’ feedback. The first session (including the Operation Span
Task and the Binding-Updating Task) took approximately 35 minutes to complete, and
participants were paid 5.25 GBP. The second session (including the Rotation Span Task)
took approximately 9 minutes to complete, and participants were paid 1.50 GBP.

Table A4.1 presents bivariate correlations among the WM tasks, and between the
WM tasks and measures of adversity. The WM tasks correlated moderately to strongly
with each other. The strongest correlation was between the Binding and Updating score
(.80). This is not surprising given that both scores are derived from the same task, and
shows the importance of accounting for this association in the model. Neither unpre-
dictability nor material deprivation were significantly associated with performance on
any of the WM tasks. However, higher levels of experienced neighborhood threat were
associated with lower performance on the Binding and Updating Task. Note that these
associations were based on raw task performance and not on latent estimates.
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Table A4.1. Bivariate correlations between WM tasks and adversity measures in the Pilot

1 2 3 4 5 6 7
WM tasks
1. Operation Span Task - 45 96 96 96 96 96
2. Rotation Span Task 0.38" - 45 45 45 45 45
3. Binding Task 0.42% 0.41* - 96 96 96 96
4. Updating Task 0.42% 0.51* 0.80*** - 96 96 96
Adversity
5. Unpredictability -0.14 0.19 -0.16 -0.04 - 96 96
6. Threat -0.05 -0.15 -0.24* -0.22* 0.25* . 96
7. Material deprivation 0.06 0.04 0.04 -0.09 -0.23* -0.39%* -
Mean 0.82 0.76 0.84 0.75 2.18 -0.00 3.79
SD 0.15 0.16 0.16 017 0.90 0.87 0.76
Median 0.85 0.76 0.89 0.78 1.94 -0.33 4.00
Min 0.39 0.37 0.31 0.31 1.00 -0.95 1.57
Max 1.00 0.98 1.00 1.00 5.00 3.54 5.00
Skew -0.97 -0.71 -1.34 -0.78 0.83 1.51 -0.88
Kurtosis 0.14 -0.10 1.26 -0.04 0.11 2.30 0.16

Note: The upper diagonal presents sample sizes for each bivariate comparison. The measures of
unpredictability, threat, and material deprivation differ from those in the main study.

Section 2. Exploratory analyses

To contextualize our confirmatory (preregistered) findings, we conducted three ex-
ploratory (non-preregistered) analyses. First, we explored associations between ad-
versity and performance on the separate WM tasks using linear regression. Second, we
constrained regression paths in the SEM to zero, as an alternative to the equivalence
tests. Third, we computed Bayes Factors for the equivalence tests.

Linear regression analyses

We estimated a total of five linear regression models, one per WM task. Each model
included the same independent variables and covariates as the primary analysis. We
adjusted for multiple testing across models involving the Rotation Span Task, Opera-
tion Span Task, and the binding trials of the Binding-Updating Task, and separately for
the updating trials of the Binding-Updating Task, as the former three tasks are primar-
ily conceptualized as WM capacity tasks. We also tested for practical equivalence in the
same way as for the confirmatory analyses

The results are summarized in Figure A4.1. Threat was negatively associated with
performance on the Rotation Span Task (8 =-0.13, p =.014), Operation Span Task (5 =
-0.14, p =.014), and binding trials of the Binding-Updating Task (8 = -0.12, p =.014).
Unpredictability in perceived scarcity was positively associated with performance on
the Rotation Span Task (8 = 0.13, p = .014). None of the types of adversity were sig-
nificantly associated with performance on the updating trials of the Binding-Updating
Task.

In addition, there was some limited evidence for practical equivalence, especially
for unpredictability in the income-to-needs ratio, which showed a practically equiva-
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Figure A4.1. Exploratory (non-preregistered) results testing the association between threat, depri-
vation, and unpredictability on residual variances of separate WM tasks. The gray area shows the area of
practical equivalence. Solid points indicate effects outside the area of practical equivalence, which was
true for all effects. Standard errors represent the 95% confidence intervals. CV = coefficient of variation;
INR = income-to-needs ratio; M = mean; WM = working memory.

lent association with the Operation Span Task, Rotation Span Task, and Updating Task.
We also found a practically equivalent association between unpredictability in per-
ceived scarcity and the Binding Task.

Bayes Factors for equivalence tests

As a robustness check, we calculated Bayes factors for the preregistered equivalence
tests using the bain package (Hoijtink et al., 2019), in which we evaluated evidence
in favor of the hypothesis that the effects fell within the equivalence bounds, relative
to the hypothesis that the effects fell outside the equivalence bounds. The results are
summarized in Table A4.3. For all but one association, the model comparisons showed
atleast strong evidence in favor of the hypothesis that the effects fell within the equiva-
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lence bounds (BF;, ranging between 16.9 and 158.9. The only exception was the asso-
ciation between threat and WM capacity, for which we found moderate evidence for the
hypothesis that the effect fell within the equivalence bounds (BF;¢ = 5.5. Thus, these
results were inconsistent with the preregistered frequentist equivalent tests.

Table A4.3. Bayes Factors for practical equivalence tests.

Hypothesis BF g
-0.1 < (WM capacity ~ INR CV) < 0.1 316
-0.1 < (WM capacity ~ INR mean) < 0.1 84.3
-0.1 = (WM capacity ~ Perc. scarcity CV) < 0.1 158.9
-0.1 < (WM capacity ~ Perc. scarcity mean) < 0.1 37.7
-0.1 < (WM capacity ~ Threat) < 0.1 55
-0.1 < (WM updating ~ INR CV) < 0.1 91.7
-0.1 < (WM updating ~ INR mean) < 0.1 16.9
-0.1 = (WM updating ~ Perc. scarcity CV) < 0.1 158.9
-0.1 = (WM updating ~ Perc. scarcity mean) < 0.1 40.2
-0.1 < (WM updating ~ Threat) < 0.1 77.0

BF = Bayes factor; CV = coefficient of variance, INR =
income-to-needs ratio, M = mean, Perc. Scarcity = perceived
scarcity, WM = working memory

Section 3. Histograms of independent measures
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Figure A4.2. Histograms for mean perceived material deprivation over time.
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Decennia aan onderzoek tonen aan dat mensen uit chronisch stressvolle omgevingen
gemiddeld genomen slechter presteren op cognitieve taken. Dit is in verband gebracht
met beperkingen in verschillende cognitieve vaardigheden. Deze bevindingen hebben
geleid tot een proliferatie van deficit modellen, die de nadruk leggen op de negatieve
gevolgen van stressvolle omstandigheden op de sociale en cognitieve ontwikkeling.
In recenter onderzoek is echter steeds meer aandacht voor adaptaties in specifieke
vaardigheden en strategieén. Zulke adaptaties kunnen mogelijk leiden tot verbeterin-
gen in vaardigheden die nuttig zijn voor het oplossen van unieke uitdagingen in
stressvolle omstandigheden (bijvoorbeeld het herkennen van gevaar of het detecteren
van infrequente beloningen). Een betere integratie van deficit- en adaptatieperspec-
tieven is belangrijk voor de ontwikkeling van gebalanceerde wetenschappelijke en
maatschappelijke inzichten.

Desondanks is het moeilijk gebleken om deficit- en adaptatieperspectieven met
elkaar te integreren. In dit proefschrift beargumenteer ik dat één van de redenen
hiervoor methodologisch van aard is. In beide typen onderzoek worden cognitieve
vaardigheden vaak gemeten met behulp van ruwe prestaties op cognitieve taken.
Voorbeelden van ruwe prestatiematen zijn gemiddelde reactietijden of het percentage
correcte responsen. Zo worden langzamere responsen op inhibitietaken doorgaans
geinterpreteerd als een probleem in het negeren van afleidingen. Recent onderzoek
in cognitieve psychologie laat echter zien dat het gebruik van ruwe prestatiematen
meerdere limitaties behelst. Door deze limitaties overschatten onderzoekers mogelijk
de mate waarin specifieke EF vaardigheden worden verslechterd door blootstelling
aan stressvolle omstandigheden, en missen ze mogelijk adaptaties in vaardigheden en
strategieén.

Dit proefschrift focust op twee limitaties van het gebruik van ruwe prestatiematen
in de context van het meten van executieve functies (EF). EFs zijn een verzameling cog-
nitieve vaardigheden die betrokken zijn bij plannen, redeneren, en doelgericht gedrag.
De eerste limitatie is dat prestaties op EF taken niet alleen worden beinvloed door
specifieke EFs, maar ook door andere cognitieve processen. Voorbeelden van zulke
cognitieve processen zijn de mate van voorzichtigheid waarmee iemand beslissingen
neemt en de snelheid waarmee iemand een respons uitvoert. Dit betekent dat de ruwe
prestaties van twee mensen kunnen verschillen zelfs als ze niet verschillen in hun
EF vaardigheid, bijvoorbeeld wanneer de één relatief voorzichtiger is dan de ander.
De tweede limitatie is dat prestaties op EF taken niet alleen worden beinvloed door
specifieke EF vaardigheden, maar ook door algemene processen die van invloed zijn
op verschillende EF taken. Als een dergelijk algemeen cognitief proces leidt tot lagere
prestaties op meerdere taken kan dit verkeerd worden geinterpreteerd als meerdere
verslechterde vaardigheden. Beide limitaties staan een integratie van deficit- en adap-
tatiemodellen in de weg (Hoofdstuk 1).
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Om de eerste limitatie te addresseren maak ik in dit proefschrift gebruik van
cognitief modelleren, specifiek het Drift Diffusion Model (DDM). Het DDM geeft een
verklaring van de manier waarop mensen beslissingen nemen op taken met binaire
keuzeopties, zoals veel EF taken. Het verklaart verschillen in reactiesnelheden en accu-
ratesse als een combinatie van (1) de snelheid waarmee iemand informatie verzamelt
(de drift rate), (2) de hoeveelheid informatie die iemand nodig heeft om een beslissing
te nemen (met andere woorden, hoe voorzichtig iemand is; de boundary separation) en
(3) de snelheid van processen die niet direct betrokken zijn bij nemen van beslissin-
gen, zoals het encoderen van informatie aan het begin van de taak en het uitvoeren
van een actie zodra een beslissing is genomen (de non-decision time. Door het DDM toe
te passen op empirische data van reactiesnelheden en accuratesse is het mogelijk om
individuele schattingen te krijgen van deze drie cognitieve processen. Om de tweede
limitatie te addresseren gebruik ik structural equation modeling. Deze techniek maakt
het mogelijk om te onderzoeken in hoeverre prestaties op EF taken worden beinvloed
door cognitieve processen die worden gedeeld door taken, versus cognitieve processen
die uniek zijn voor specifieke taken.

Het onderzoek beschreven in dit proefschrift laat zien dat de samenhang tussen
stressvolle omstandigheden en specifieke EF vaardigheden wordt overschat door het
gebruik van ruwe prestatiematen. Dit blijkt in de eerste plaats uit het feit dat negatieve
associaties tussen blootstelling aan stressvolle omstandigheden en drift rates worden
gedreven door algemene processen die van invloed zijn op verschillende EF taken.
Amerikaanse kinderen met meer blootstelling aan dreiging (maar niet deprivatie) hed-
den een lagere algemene drift rate op drie EF taken en een basale verwerkingssnelhei-
dstaak (Hoofdstuk 2). Nederlandse volwassenen met meer blootstelling aan dreiging
in de volwassenheid, en zowel dreiging als deprivatie in de kindertijd, hebben eveneens
een lagere algemene drift rate (Hoofdstuk 3). Tot slot presteren jongvolwassenen met
meer blootstelling aan dreiging en onvoorspelbaarheid in de kindertijd slechter op
de Flankertaak vanwege lagere perceptuele verwerking, niet vanwege een lagere in-
hibitievaardigheid (Hoofdstuk 4). In Hoofdstuk 6 bespreek ik verschillende mogelijke
interpretaties van dit algemene proces. De meest waarschijnlijke verklaring—op basis
van de huidige bevindingen en voorgaand onderzoek—is dat het een indicatie is van
een lagere algemene verwerkingssnelheid. Het is echter mogelijk dat de algemene drift
rate factor een combinatie is van verschillende processen, zoals iemands huidige staat
(motivatie, vermoeidheid, etc.) en meer stabiele individuele eigenschappen.

Na een correctie voor algemene processen is er weinig tot geen bewijs dat bloot-
stelling aan stressvolle omstandigheden samenhangt met specifieke EF vaardigheden.
Amerikaanse kinderen met meer blootstelling aan dreiging hebben taakspecifieke drift
rates die praktisch equivalent zijn aan die van kinderen uit een veiligere omgeving
(Hoofdstuk 2). Dit suggereert dat hun EF vaardigheden even goed ontwikkeld zijn.
Deze studie bevatte echter maar één taak per EF vaardigheid; hierdoor was het niet
mogelijk om te onderzoeken in hoeverre taakspecifieke drift rates een reflectie waren
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van specifieke EF vaardigheden. In een vervolgstudie met Nederlandse volwassenen
includeer ik meerdere taken per EF vaardigheid (inhibitie en aandachtsverschuiving),
wat het mogelijk maakt om de EF vaardigheden op latent niveau te schatten. Na een
correctie voor algemene processen is de overgebleven variantie echter niet toe te
schrijven aan specifieke EF vaardigheden. Hoewel sommige vormen van stressvolle
omstandigheden (met name dreiging in de kindertijd) negatief samenhangen met
drift rates, zijn al deze effecten onafhankelijk van elkaar, ook voor taken die dezelfde
vaardigheid beogen te meten. Met andere woorden, mensen met meer blootstelling aan
stressvolle omstandigheden verwerken informatie op specifieke taken langzamer van-
wege unieke aspecten van de taak, niet vanwege verslechterde EF vaardigheden die
worden gedeeld door sommige taken. Tot slot hangt blootstelling aan stressvolle om-
standigheden ook niet samen met de vaardigheid om informatie in het werkgeheugen
te updaten, nadat ik corrigeer voor de capaciteit van het werkgeheugen (Hoofdstuk 5).

Tot slotlaat mijn onderzoek zien dat mensen uit meer stressvolle omstandigheden
in sommige gevallen andere strategieén gebruiken dan mensen uit minder stressvolle
omstandigheden. Amerikaanse kinderen met meer blootstelling aan dreiging hebben
een (al dan niet bewuste) strategie om langer de tijd te nemen en daarmee hun ac-
curatesse te vergroten (Hoofdstuk 2). Ik vind echter geen bewijs voor een dergelijke
strategie bij jongvolwassenen (Hoofdstuk 4) en volwassenen (Hoofdstuk 3). Daar-
naast suggereert mijn onderzoek ook dat jongvolwassenen met meer blootstelling
aan dreiging en onvoorspelbaarheid in de kindertijd langzamer zijn in het verwerken
van informatie op de Flankertaak omdat ze een meer holistische informatieverwerk-
ingsstijl hebben (Hoofdstuk 4). Dit betekent dat ze meer geneigd zijn om te focussen
op globale eigenschappen van visuele informatie in plaats van individuele stimuli. Mo-
gelijk is dit een adaptatie die mensen beter in staat stelt om perifere informatie snel te
detecteren.

Dit proefschrift biedt een aantal aanbevelingen voor toekomstig wetenschappelijk
onderzoek (Hoofdstuk 6). Het is belangrijk om rekening te houden met het feit dat (1)
prestaties op EF taken worden beinvloed door meerdere cognitieve processen en (2)
dat prestaties op EF taken voor een substantieel deel worden beinvloed door algemene
processen die van invloed zijn op meerdere taken, niet door specifieke EF vaardighe-
den. Daarnaast zouden studies idealiter twee of meer taken per EF vaardigheid includ-
eren, zodat deze vaardigheden op latent niveau geschat kunnen worden. De combinatie
van cognitief modelleren en structural equation modeling kan een centrale rol spelen
in twee huidige onwikkelingen in het veld. Ten eerste stelt het toekomstig onderzoek
beter in staat om specifieke hypothesen te testen over de interactie van deficit- en
adaptatieprocessen binnen dezelfde persoon. Ten tweede kan het helpen in het beter
begrijpen waarom mensen uit stressvolle omstandigheden gevoeliger lijken te zijn
voor verschillende typen inhoud van cognitieve taken, en welke cognitieve processen
hiervoor verantwoordelijk zijn. Op deze manier is cognitief modelleren een onmisbare
techniek voor de volgende generatie onderzoekers in dit veld.
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